
Safe Planning and Exploration for Mobile Robots
in Unknown, Hazardous Environments

Matthew Budd
Pembroke College

University of Oxford

Submitted in partial fulfilment of the requirements
for the Master of Engineering in Engineering Science

at the University of Oxford

Trinity Term 2020

Acknowledgements

This project benefited hugely from the help and support of a number of people within and with-

out the Oxford Robotics Institute.

In particular I would like to thank Dr Bruno Lacerda and Dr Paul Duckworth for their constant

input, feedback and insight into problems in their areas of expertise, and to Professor Nick Hawes for

his consistent support with the project. Their help has been essential due to the variety of research

topics covered in the text below, and I have been very fortunate to have had access to their knowledge.

I would also like to express my gratitude to Dr Andrew West at the University of Manchester for

producing the gamma radiation environment data sets and maps, as well as for his insights into radiation

physics.

i

Abstract

In this project, we tackle the problem of an autonomous mobile robot exploring an environment

over which there is an unknown distribution of a hazard that may harm it - the exploration task

is to safely gain as much knowledge of this distribution as possible. In particular, we make use of

techniques from the fields of probabilistic planning under uncertainty and Gaussian process modelling

of environmental features that affect robot safety.

A new model is proposed and developed for these safety-constrained exploration problems - an

Estimated MDP - that integrates Gaussian process predictions within a Markov decision process

structure, enabling the robot to better reason about the safety of its plans and also allow for efficient

exploration. We analyse how the model relates to other formalisms designed to work with imperfect

information, and use it to design a novel exploration algorithm that can handle more complex

exploration problems than previous literature.

The algorithm is evaluated on simulated and real-world environments, including a gamma radiation

dataset where the agent must explore an area with an a priori unknown distribution of radiation.

The exploration system is then integrated into a mobile robot platform to demonstrate how it would

function as the core of an autonomous exploration machine that ensures its own safety while gathering

useful information on the distribution of hazards in its environment.

ii

Contents

1 Introduction 1

1.1 Background and Project Aims . 1

1.2 Literature Review . 2

1.3 Structure of this Report . 4

2 Theoretical Approach 5

2.1 Preliminaries . 5

2.1.1 Markov Decision Processes . 5

2.1.2 Constrained Reachability Optimisation and Linear Temporal Logic 6

2.1.3 Gaussian Process Regression . 8

2.2 Additional Background Theory . 12

2.2.1 Kullback–Leibler Divergence Between Two Multivariate Normal Distributions 12

2.2.2 Poisson Statistics of Radiation Exposure . 12

2.3 Exploration Model . 13

2.3.1 Reachability and Returnability in an MDP 14

2.3.2 Formal Problem Definition . 15

2.3.3 Mapping from Continuous GP Domain to Discrete MDP States 15

2.4 Top-Level Exploration Algorithm for Probabilistic Transition Models 16

2.4.1 U-MDP Exploration Algorithm . 16

2.4.2 Policy Safety Check . 18

2.4.3 Probabilistic Determination of Reachability and Returnability 19

2.5 Confidence Bounds Approach to Path Planning . 19

2.5.1 Confidence Bound Goal and Policy Generation Algorithm 20

2.6 Estimated MDP Approach to Path Planning . 22

2.6.1 Estimated MDP Structure . 22

2.6.2 Estimated MDP Goal and Policy Generation Algorithm 23

2.6.3 Goal Scoring Function . 25

iii

0 CONTENTS

2.7 Extension of Estimated MDP Approach to Multi-Step GP Propagation 26

3 Implementation and Experiments 27

3.1 Software Architecture . 27

3.2 Evaluation in Simulation . 28

3.2.1 Programmatically Generated Water Depth Model 28

3.2.2 Single Radiation Source Dataset . 30

3.2.3 Multiple Radiation Source Map . 32

3.2.4 Expander State Determination . 37

3.3 Further Discussion . 38

3.3.1 Implementation Performance Evaluation . 38

3.3.2 Modelling of Radiation Environments with Gaussian Processes 39

3.3.3 Additional Gaussian Process Model Considerations 41

4 System Integration with ROS 42

4.1 Software Architecture . 42

4.1.1 Topological Navigation Stack . 43

4.1.2 Safe Exploration Package . 43

4.1.3 Radiation Tools Package . 44

4.1.4 Output Visualisation Package . 44

4.2 System Validation Outputs . 45

5 Conclusions 46

5.1 Summary of Contributions . 46

5.2 Potential Future Work . 47

Bibliography 49

Appendices

Risk Assessment . a

iv

1 Introduction

(a) The AVEXIS submersible robotic vehicle,
developed to investigate radioactive debris. Image

used with permission of The University of Manchester.

(b) Visualisation of a Mars rover prototype navigating
a challenging environment. Image: ESA / SCISYS /

UKSA.

Figure 1.1: Two examples of mobile robotics applications where safe planning is important.

1.1 Background and Project Aims

For many tasks that autonomous mobile robots are well suited to, the robotic agent may need to

plan and navigate in an environment where there is an a priori unknown distribution of a hazard.

Examples of hazards include steep terrain (for planetary surface exploration rovers), water depth or

current (for underwater autonomous vehicles), or radiation exposure (for disaster recovery/nuclear

material inspection robots). We assume that as the robot explores it is able to measure how hazardous

its current location is. It should then be able to use this information to make predictions about the

distribution of the hazard, and carry out planning using those predictions, to ensure its future

navigation is carried out in a safe manner.

There are many good reasons for ensuring robot safety, outside of maximising the usable lifetime of

the robot system (which is particularly key for planetary exploration rovers which are expensive to

transport to their destination). Broken-down robots may be difficult to safely retrieve [1, 2] and may

therefore cause environmental damage or impede access to an area for future robotic missions. The safety

of the robot’s behaviour may also directly impact the safety of humans that have to work alongside it.

1

1 Introduction

In this project, we consider exploration across models that can be represented as a Markov decision

process (MDP). These models are commonly used for planning under uncertainty for robots, and

can be generalised to add the ability to handle incomplete information. For example, it can be

extended to a Partially Observable MDP (POMDP).

This project takes significant inspiration from previous work in the field of safe exploration - in

particular, the family of exploration algorithms based on the SafeMDP algorithm originally proposed

by Turchetta et al. [3]. In common with these algorithms, we make use of Gaussian process models [4]

to predict the safety of states that have yet to be visited. These are relatively simple non-parametric

models, popular for their high performance on non-linear regression tasks. There is a significant

body of literature available covering their application to a wide range of problems, including the

task of modelling the spatial distribution of radioactive material.

On the planning side (an area not addressed in depth by previous safe exploration literature),

this work makes use of techniques from formal verification of systems. Concepts from probabilistic

model checking are used to provide probabilistic guarantees on the agent’s ability to fulfil goals

safely (such as calculating the probability and associated expected cost of safely navigating to a

new location to carry out a measurement).

The overall aim of this project is to investigate and develop methods of handling uncertainty

and ensuring safety in an autonomous agent’s environment. We make several contributions to the

field of safe exploration, proposing a new exploration framework that makes use of new and powerful

formalisms and algorithms that were developed during the course of the project.

1.2 Literature Review

Classical approaches to robot safety include specifying in advance which types of actions are unsafe,

attempting to define recovery behaviours that should allow the agent to make itself safe again if it

detects it has encountered an issue, or limiting the agent to ergodic policies that are sure to let the

agent recover from any visited state [5]. However, these classical approaches are generally not scalable,

assume that the unsafe states are known a priori, or overly restrict the robot’s capabilities.

Some more recent approaches are less limited in their utility, as they include a model to make

predictions about the safety of the environment. A commonly used model is a Gaussian process (GP)

regression, which is particularly useful both for its ability to fit a wide range of functions (depending on

the choice of kernel function) and because it readily provides uncertainty bounds on its predictions. GP

exploration has been investigated in [6], where the value of an unknown objective function, modelled

with a GP, is optimised while avoiding the risk of sampling the function where its value is below a

2

1 Introduction

safety threshold. This paper therefore considers a stateless “multi-armed bandit” scenario where the

agent’s reward depends only on actions taken, without the added structural constraints of an MDP.

The example chosen for this paper was outside the field of mobile robotics, and detailed a medical

setting where effective therapies must be explored and exploited, but where the agent must avoid

suggesting a therapy whose effectiveness is too low as this may harm the patient.

Building upon the ergodic returnability proposed in [7] and the GP model in [6], Turchetta et al.

[3] proposed a method of safely exploring MDPs. They formalised the notions of reachability from and

returnability to the safe set of states in the MDP. We extend several of these concepts in this report.

However, no existing literature tackles the problem of safely exploring an MDP with a probabilistic

transition function: [3] and [8] consider only MDPs with a deterministic transition function between

states, which restricts the class of problems the algorithms can be applied to.

Wachi et al. [8] consider a safe exploration setting in which the agent is also seeking to maximise

an unknown objective function, also estimated by a Gaussian Process model, inside the safe explorable

area. They also explore environments where the safety process changes over time, using spatio-temporal

GPs [9]. Separately, [10] extends the safe exploration approach of [3] to support goal-driven exploration

where the agent has a goal state to reach (provided by a higher-level “oracle”) and aims to carry out

the minimum exploration required either to reach the goal or determine that it cannot reach it safely.

We do not directly tackle these extension problems in this report (they are left as potential future

work), but the techniques presented could be extended in much the same way as in the literature above.

As the focus of this project is on safety constrained problems, the formalisms we develop are based

on the safe exploration literature detailed above. However, parallel work has been carried out on

similar problems involving exploration and planning under uncertainty, but from a purely Bayesian

optimisation perspective where an agent wishes to locate the maximum of an unknown function. This

body of work includes [11], which makes use of a POMDP model where the observation function is

modelled as a GP. This is similar in concept to our formalism proposed in Section 2.6.1: both roll the

GP into the MDP model, whereas previous safe exploration literature only uses the GP to produce

worst-case MDPs (Section 2.5) which are then separately solved. As POMDPs are more complex

than MDPs, and exact solutions to them are generally intractable, Monte Carlo tree search (MCTS)

techniques are used to generate solutions in this paper and related ones.

Along the same lines, Flaspohler et al. [12] make heavy use of information theory to determine the

optimal approach to a maximum-seek-and-sample task that is similar to the Bayesian optimisation

problem in [8]. They develop MCTS-based planning algorithms to carry out the task, using the

POMDP/GP formalism discussed in [11]. Although this paper does not cover safety-constrained

3

1 Introduction

problems, its “informative path planning” approach to gathering information is closely related to

this project’s goal of identifying safe paths to informative states to visit.

Many of the techniques discussed here are also applicable to a control theory setting in continuous

time, and existing literature has some examples of this application. In [13], Koller et al. apply

some of the underlying concepts of SafeMDP to a model predictive control setting. In another

piece of recent literature, Polymenakos et al. [14] tackle GP multi-step-ahead prediction in the

context of control theory. They develop theory to provide formal probabilistic bounds on the GP

predictions that can be propagated multiple steps for path planning purposes. These can then

be used in a safe reinforcement learning framework to safely learn the parameters of a controller.

The task of choosing an optimal controller can be thought of as being analagous to our task of

choosing an optimal policy for planning paths.

There is also of course significant interest in ensuring safety for machine learning systems. For

example, in reinforcement learning (which also often makes use of an MDP model), significant thought

is required to prevent the agent from carrying out exploratory actions that are designed to gather

useful data but may endanger the robot. One approach is to add the concept of risk to the agent’s

optimisation criterion [5], but this still does not assign a hard limit on how much the agent is willing

to risk its safety - and also assumes that the undesirable states are known a priori.

In summary, we can identify connections between several strands of recent work across multiple re-

search areas. This highlights the relevance and wide potential applications of work on the topic of safe ex-

ploration.

1.3 Structure of this Report

The remainder of this report is split into 3 main sections:

• Chapter 2 covers the theoretical constructs developed during the course of this project. After

setting out the preliminary theory, a short section covers additional background theory that is

referred to in the experiments. In later sections, the description of the exploration approach

is split into two parts: the high-level approach is laid out in Section 2.4, and two different

approaches to the path planning algorithms are investigated in Sections 2.5 and 2.6.

• Chapter 3 shows how the data structures and algorithms were implemented, and results of

experiments in simulation that were run to validate and test the exploration approach.

• Chapter 4 documents the integration of the exploration software implementation into a robotic

system, and the development of other tools that enable testing in a more representative real-world

environment than the simulated tasks in the previous chapter.

4

2 Theoretical Approach

2.1 Preliminaries

2.1.1 Markov Decision Processes

A Markov decision process is a formalism frequently used in robotics to represent a series of sequential

decisions, which can have probabilistic outcomes that affect the state of the robot and the environment.

An in-depth explanation of techniques for solving MDPs (determining the optimal action(s) to take

in any MDP state, typically involving the use of dynamic programming methods) is outside the

scope of the report, and is covered in depth by [15].

Definition 1 (MDP). A Markov decision process is defined as a tupleM = 〈S, s,A, T, C,AP 〉, where:

• S is a finite set of states, which we assume we can factor into a set of n state features such that

S = X1 × . . .×Xn. Examples of state features could be x position, y position, water depth, etc,

• s ∈ S is the distribution over initial states the agent may start in (which may have all probability

mass assigned to a single known initial state),

• A is a finite set of actions with pre-conditions (on state feature values) that must be satisfied for

an action to be enabled, and probabilistic outcomes on how the action will evolve the state,

• T : S ×A× S → [0, 1] is a probabilistic transition function representing the possible outcomes of

an action, where
∑
s′∈S T (s, a, s′) ∈ {0, 1} for all s ∈ S, a ∈ A,

– The set of actions that are enabled in state s is defined as As = {a ∈ A | exists s′ ∈

S such that T (s, a, s′) > 0},

• C : S ×A→ R is a cost structure defined across the MDP which specifies the “cost” (or reward,

expressed as a negative cost) of taking an action in a state,

• AP is a set of atomic propositions. These are logical formulae on the state feature values that

must evaluate to true or false.

This definition can straightforwardly be transformed into other similar definitions of an MDP, such as

where the cost is associated with a unique action outcome rather than taking the action itself.

5

2 Theoretical Approach

2.1.2 Constrained Reachability Optimisation and Linear Temporal Logic

a0
s0

s1

s2

c = 1.0

a3

c = 0.5

a2

c = 2.0

a1

c = 0.5

s3Pr=0.5

Pr=0.5

Pr=0.7

Pr=0.3

a4

c = 0.5

Pr=0.8

Pr=0.2

s4

s5

Pr=0.6
Pr=0.4

a5

c = 0

a6

c = 0

Figure 2.1: A simple MDP showing an example path that has resulted from the actions taken at each state.
The path is infinite length as state 4 (as well as state 5) has a self-loop.

Taking actions at each state in an MDP results in the agent taking a path through the MDP.

Definition 2 (Path). A path through an MDP M starting in s0 ∈ S is defined as a sequence

w = s0
a0→ s1

a1→ ... where T (si, ai, si+1) > 0 for all i. For MDPM and state s ∈ S, we denote the set

of all paths starting in s as PathM,s.

The choice of action to take at each step of the execution of an MDP is made by a policy.

Definition 3 (Policy). We define a policy over an MDP as a function π : S → A such that, for any

state s ∈ S, π(s) ∈ As. This makes our policies deterministic and memoryless, as they specify a single

action to be taken (rather than a probability distribution over actions) and depend only on the current

state s. This form of policy suffices for the problems tackled in this report.

We denote the set of all policies as ΠM, and the set of paths under a policy π as PathπM,s ⊆ PathM,s.

With this, we can define a probability measure PrπM,s over PathM,s, following policy π - this is a

probability distribution over the paths that could result from the agent following the policy. Accordingly,

we can also define expected values Eπ
M,s(·) over paths.

Definition 4 (Cumulative Cost Function). We also define a cumulative cost function cumul :

PathM,s → R that maps a path w to the cost accumulated (which is finite only for paths which

end in a loop with zero cost):

cumul(s0
a0→ s1

a1→ ...) =
s0
a0→s1

a1→...∑
i=0

c(si, ai). (2.1)

Eπ
M,s(cumulPathM,s

) therefore refers to the expected cumulative cost across the corresponding probability

distribution over paths PathM,s.

6

2 Theoretical Approach

Definition 5 (Constrained Reachability). In the context of safe exploration, we are particularly

interested in identifying a policy to reach one of a set of goal states G ∈ S while avoiding entering any

of a set of forbidden states F ∈ S, while minimising the cost of doing so. The set of paths that satisfy

this desired behaviour are:

reachF,G = {(s0
a0→ s1

a1→ ...
ai−1→ si

ai→ ...) ∈ PathM,s0 | exists i ∈ N

such that si ∈ G and sj 6∈ F for all j ≤ i}.
(2.2)

The set of policies that are optimal can be expressed as:

{π ∈ ΠM | π = arg max
π′

Prπ′M,s(reachF,G)} (2.3)

The overall optimisation objective can therefore be defined as finding the policy π∗F,G with the lowest

expected cost, out of the policies that maximise the probability of satisfying the constrained reachability

problem. Formally:

πF,G = arg min
{π ∈ ΠM | π=arg maxπ′ Prπ′M,s

(reachF,G)}
Eπ
M,s(cumulF,G). (2.4)

Definition 6 (Linear Temporal Logic). Linear temporal logic (LTL) [16] is a specification language

which allows logical specifications of goals or tasks as an LTL formula. The LTL formula for the

constrained reachability problem above is (¬F U G), where U is the “until” operator.

Co-safe LTL is a subset of LTL that covers task specifications that are able to be completed in a

finite time period. The above expression is co-safe. An informal justification for this would be that it

does not require an infinite path or loop - the equation is satisfied when the agent reaches one of the

states in G, and any further steps are irrelevant.

The constrained reachability problem in Definition 5 is effectively a dual optimisation criterion

approach to a stochastic shortest path problem as discussed in [17], where it is also possible that

finding a policy that will satisfy the task with probability one is not guaranteed. Lacerda et al. [18]

further extend the optimisation problem by encoding it as a co-safe LTL specification and introduce

the notion of a task progression metric: the agent will choose a cost-optimal policy from those that

maximise expected progression towards completion of the task, when no policy can be found that

satisfies the task with probability one. This allows the agent to satisfy as much of the task specification

as possible, even when it does not expect to be able to completely satisfy it.

7

2 Theoretical Approach

2.1.3 Gaussian Process Regression

The previous section assumes that the forbidden, unsafe set of states is known. However, for our safe

exploration task, unvisited states have unknown safety and the agent must have some mechanism to

make predictions about the safety of these states. As detailed in the literature review, a Gaussian

process (GP) model is a good fit for these requirements, as it also provides measures of predictive

uncertainty which can be interpreted as confidence regions on the prediction at a state.

This report denotes scalars in italics (x), vectors in bold type (x), and matrices in capitals (X).

Definition 7 (Gaussian Process). A Gaussian process is a collection of random variables, any finite num-

ber of which have a joint Gaussian distribution [4]. A GP model is of the form o(x) ∼ GP(m(x), k(x, x′)),

and represents a probability distribution over functions, fully specified by its mean function m(x) and

kernel or covariance function k(x, x′). We can let m(x) = 0 without loss of generality.

We wish to carry out a GP regression to predict values o(x∗) at a vector of test points x∗, given

a vector of noisy data y where yi = o(xi) + ni. For a standard GP regression, the data points are

assumed to be related to the underlying function o by a Gaussian noise model likelihood function,

with measurement noise ni ∼ N (0, σ2
n). For a standard GP regression we assume that σn is constant

across data points, to give a likelihood function of p(y | o) = N (o, σ2
n). It is also possible to define a

heteroscedastic GP where the noise variance is different for each data point [4]. The joint distribution

of the observed data point values and the function values at the test points can then be written as:[
y

o(x∗)

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2.5)

For the above equation (given n data points and n∗ test points), K(X,X∗) denotes the n × n∗

matrix of the covariance function evaluated at all pairs of training and test points, and similarly for

the other entries K(X,X), K(X∗, X) and K(X∗, X∗). I ∈ Rn×n is the identity matrix.

Conditioning this joint Gaussian prior distribution on the observations y gives the (predictive)

posterior distribution, which is another multivariate Gaussian distribution:

o(x∗) ∼ N (µ,Σ) , where: (2.6)

Mean: µ = K(X∗, X)
[
K(X,X) + σ2

nI
]−1

y (2.7)

Covariance: Σ = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗) (2.8)

Mean (with m(x) 6= 0): µ = m(X∗) +K(X∗, X)
[
K(X,X) + σ2

nI
]−1

(y−m(X)) (2.9)

Equation (2.9) covers the case where the GP has a fixed, deterministic mean function rather than

assuming it to be zero. This is straightforward to include as the usual zero mean GP is simply used

to model the difference between the data point values and the deterministic mean function.

8

2 Theoretical Approach

−4 −2 0 2 4 6 8
−10

−5

0

5

10

Upper confidence bound function

Lower confidence bound function

Data Points

Mean Prediction

2σ Confidence Bounds

Confidence Bound
Functions

Figure 2.2: An example of a Gaussian process regression with noisy data points, showing ±2σ confidence
bounds around the predicted mean function (equivalent to a ~95% confidence interval).

For clarity in this report, we will also write the input of a GP function as a state s rather than

explicitly listing state feature variables. This is equivalent to the input vector of the GP being composed

of the relevant state feature values. For example, if the GP is defined over the x position state feature

and the y position state feature of a state, the input of the GP model will be a 2-dimensional vector
[
x
y

]
.

The result of a GP regression is a posterior probability distribution over admissible functions that

could have resulted in the data points, which can be expressed as a mean function and a confidence

interval (for a specified confidence level), as shown in Figure 2.2 for a 95% confidence region. Functions

can be sampled from the GP posterior distribution by sampling the GP at an arbitrary number of points.

Each point of the function is distributed as a Gaussian, and these confidence intervals are symmetrical

around the mean prediction and are specified by the standard deviation of the Gaussian as expected.

We refer to the functions that make up the confidence interval boundaries as the lower and

upper confidence bound functions. Clearly, these functions depend on the number of standard

deviations specified by the chosen confidence interval.

The covariance matrix of the multivariate Gaussian distribution produced by the GP regression is a

result of the GP kernel function chosen. The kernel function effectively encodes regularity assumptions

about the similarity of unknown states that are close to each other. Many families of kernel functions

exist, which can also be combined to form more complicated kernel functions. For example, a kernel

function with both a linear and a periodic element might be a good choice of kernel function for a

tidal system with long-term changes in tide amplitude. We mainly make use of two kernel functions

in this report: the RBF kernel (2.10) and the Matérn 5/2 kernel (2.11).

9

2 Theoretical Approach

k(x, x′) = σ2 exp
(
− r

2

2l2

)
, (2.10) k(x, x′) = σ2

(
1 +
√

5r
l

+ 5r2

3l2

)
exp

(
−
√

5r
l

)
, (2.11)

where r = ‖x− x′‖.

Kernel functions have hyperparameters such as lengthscale l and variance σ in the kernels above.

The values of these hyperparameters may be fixed or assigned a prior distribution to encode prior

knowledge about the dynamics of the function being estimated. Any parameters with prior distributions

assigned can then be optimised in a maximum likelihood estimation manner, by maximising the

log marginal likelihood log p(y | X) of the data points. This value is obtained by marginalising

over the values of the data points:

p(y | X) =
∫
p(y | o, X)p(o | X)do (2.12)

This can intuitively be understood as an automatic method to avoid overfitting the model, along the

lines of Occam’s razor. The maximisation is typically carried out with gradient descent optimisation

methods. The amplitude of the Gaussian measurement noise in the likelihood is often considered

as another parameter which can be fixed or determined through optimisation. The regression in

Figure 2.2 has optimised the length and variance hyperparameters of its RBF kernel (2.10) as well as

the measurement noise amplitude. The non-zero measurement noise value determined is the reason

for the confidence bounds not collapsing to zero at the data points.

As discussed in existing literature [3, 8], some standard modelling assumptions must be made about

the GP model to justify its use in estimating the safety of states in our model. We must assume that o

has bounded norm in the Reproducing Kernel Hilbert Space (RKHS) associated with the chosen kernel

function, and also that it is Lipschitz continuous with respect to some metric d(·, ·) on S. Having

bounded norm in the RKHS ensures that the function o is smooth with respect to the kernel, so that

the GP can justifiably be expected to be able to model it with the specified kernel.

The Lipschitz continuity requirement effectively means that the GP’s maximum rate of change

(which can readily be thought of as a spatial gradient for a GP with a 1- or 2-dimensional input) is

greater than the maximum rate of change expected of the underlying function o being modelled:

| o(x1)− o(x2) | ≤ L · d(x1,x2) (2.13)

For the kernels used in this report this relates to the lengthscale chosen as well as the choice of kernel

function - if a too-long lengthscale is chosen for modelling, the GP prediction uncertainty will increase

slowly with distance from measured data points. This will not capture the real behaviour of the safety

feature function, which may have diverged significantly from the predicted confidence bounds. On the

10

2 Theoretical Approach

−5 0 5 10 15
−10

−5

0

5

10

L = maxx

∣∣∣ dfdx
∣∣∣

−1.9 0.9

Function f

Lipschitz
Exclusion
Cones

Expansion
Zone

Figure 2.3: A simple 1-dimensional graphical interpretation of Lipschitz continuity. The Lipschitz constant L
(which is ≈ 5.2 for this plot) effectively defines exclusion cones where function values cannot lie. The expansion

zone concept, that effectively makes use of the Lipschitz exclusion cones, is discussed in Section 3.2.4.

other hand, if a much shorter lengthscale is chosen, the certainty bounds on the GP’s predictions will

diverge more rapidly with distance and the GP’s predictions will be less useful for exploration.

This is shown graphically for one dimension in Figure 2.3. Turchetta et al. [3] make use of the

Lipschitz constant for theoretical proofs on the performance of their exploration algorithm, as well

as an additional step in the SafeMDP algorithm as described in Section 3.2.4.

The overall requirement that the kernel function chosen is able to accurately model the dynamics

of a priori unknown underlying hazard features in the environment may appear to be overly restrictive.

However, the necessity of assuming some regularity of the underlying function is inherent to this type

of exploration problem - it is required to make the exploration problem tractable.

Similarly, the chosen rate of exploration (i.e. the distance one is willing to travel between taking

measurements) is always tied to the maximum expected rate of change (i.e. the Lipschitz constant)

of any environmental feature that affects safety. If one was trying to navigate a cloud of harmful

gas, one would check a gas meter much more frequently if the concentration of gas was expected to

change on the order of centimeters rather than on the order of metres.

For most applications, there will be at least some indication of the expected spatial gradient of

hazards - as an example, the steepest possible gradient in radiation level for a radioactive environment

will be the inverse square ∝ 1
(distance to source)2 [19] distribution for a single, concentrated source.

Although this gradient of this function tends to infinity as (distance to source) → 0, there will be

a minimum distance between the robot and source - either defined by physical geometry or how

close the robot is safely willing to go.

11

2 Theoretical Approach

2.2 Additional Background Theory

2.2.1 Kullback–Leibler Divergence Between Two
Multivariate Normal Distributions

The Kullback–Leibler (KL) divergence is a useful metric to measure the similarity between two

probability distributions, and is defined as in (2.14) for continuous probability distributions P and Q.

DKL(P1 ‖ P2) =
∫ ∞
−∞

p1(x) log
(
p1(x)
p2(x)

)
(2.14)

We are particularly interested in calculating the divergence between the posterior (predictive) dis-

tributions of two GPs, sampled at the same n points. These are multivariate normal distributions

(MVNs) in Rn, with the mean vector being the predicted mean of each sample point, and the covariance

matrix consisting of the predicted variance of each sample point, along the diagonal of the matrix.

The KL divergence for two MVNs P1 ∼ N (µ1,Σ1) and P2 ∼ N (µ2,Σ2), derived in Section 9 of

[20], is given in (2.16). It is clear from (2.15) that if µ1 = µ2 and Σ1 = Σ2, then the calculated

KL divergence is zero as the distributions are the same.

DKL(P1 ‖ P2) = 1
2

(
log det Σ2

det Σ1
− n+ tr

(
Σ−1

2 Σ1
)

+ (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

)
(2.15)

To make this calculation manageable for large n (for comparing distributions across many sample

points), we can make use of the fact that Σ1 and Σ2 are diagonal matrices:

DKL(P1 ‖ P2) = 1
2

(
n∑
i=1

log Σ2,ii
Σ1,ii

− n+
n∑
i=1

Σ1,ii
Σ2,ii

+
n∑
i=1

(µ2,i − µ1,i)2

Σ2,ii

)
(2.16)

2.2.2 Poisson Statistics of Radiation Exposure

Several experiments in this report concern the modelling of radioactive environments. Radioactive

decay is well known to be a Poisson process [21], and in the same way the occurrence of radioactive

events in time causing corresponding counts on a measurement instrument can be modelled by the

Poisson distribution. Equation 2.17 defines the probability mass function for an instrument detecting

k events in a time period given the expected number of occurences per time period λ (which is defined

by the actual radiation level multiplied by any dimensionless geometric factors).

f(k, λ) = λke−λ

k! (2.17)

The central limit theorem can be used to give the normal approximation to the Poisson distribution for

large λ:

Pois(λ) ≈ N (λ, λ) (2.18)

12

2 Theoretical Approach

2.3 Exploration Model

Previous approaches to safe exploration in MDPs [3, 7, 8, 9, 10] separate the safety dynamics (usually

represented as a single scalar-valued function) from the standard MDP model. The initial goal of the

project was to re-formalise the safe exploration problem so that the safety of states is more closely

connected to the state representation of the MDP model. This would provide a richer underlying model

that would make the modelling approach feasible for more complex problems than those previously

tackled in literature, support the development of better-performing exploration algorithms, and allow

for richer specifications over the unknown safety features. The exploration model formalisms developed

during the course of the project are presented in this section.

Definition 8 (MDP with Unknown Feature Values). An MDP with Unknown Features Values (U-

MDP)Mo = 〈So, s, A, T o, c〉 is defined as an MDP where the state space is factorised as So = Sk × Se,

where Sk is the set of known state features (Sk = Xk,1×Xk,2× ...×Xk,n) and Se is the set of unknown

state features (Se = Xe,1 ×Xe,2 × ...×Xe,n).

Furthermore, there is an unknown mapping o : Sk → Se that defines which unknown state

feature o(sk) ∈ Se is observed at sk ∈ Sk. In other words, the state of the U-MDP is defined as

(sk, o(sk)) ∈ Sk × Se, but o is unknown a priori.

The U-MDP (and the mapping function o) is a discrete representation of an underlying continuous

state space - o is a discrete mapping function, but its underlying continuous domain function can be

estimated by noisy sensor readings. Section 2.3.3 discusses how we translate between the continuous

and discrete domains.

Finally, given that a state is uniquely defined by the value of the known state feature sk ∈ Sk, the

outcome of the transition function only represents the change in the known state feature. Formally,

T o : (Sk × Se)×A× Sk → [0, 1], where T o((sk, se), a, s′k) represents the probability of moving to state

(s′k, o(s′k)) given that action a was taken at state (sk, o(sk)).

We also define a safety function over the state features as g : S → {0, 1} where g(s) = 1 when

s is considered safe. An example of a simple safety function is an upper-bound threshold b ∈ R on

an unknown state feature. The sets of safe and unsafe states can then be defined:

safe = {(sk, se) ∈ Sk × Se | g(se) = 1} (2.19)

unsafe = (Sk × Se) \ safe (2.20)

This formalisation offers richer modelling than previous approaches in the following ways:

• The formalisation provides for MDPs with probabilistic transition models;

13

2 Theoretical Approach

• Posing more of the exploration problem in the form of an MDP also enables parts of it to be

tackled with existing tools such as probabilistic solvers that work with LTL specifications;

• More complex safety specifications are supported than the simple upper-bound on a scalar value

used in previous literature;

• The dynamics of the known state features may depend on the value of unknown state features.

This allows for applications where the same physical process affects both safety and transition

behaviour: for example an underwater autonomous vehicle’s safety may depend on the strength

of water currents, and these currents also directly affect its motion when it tries to navigate; and

• It opens up potential connections between work in the field of safe exploration and work from a

Bayesian optimisation perspective such as [12]. The U-MDP can be reformulated as a POMDP,

but for our goal of safe exploration this is not necessary.

We refer to combinations of known state features Sk as known states sk, and the safety of these

states is determined by the corresponding unknown state feature values Se that the known state maps to,

defined by o(sk). Exploration is therefore across known states - it is not possible to visit all states (Sk×Se)

of the U-MDP due to the one-to-one mapping between known states features and unknown state features.

2.3.1 Reachability and Returnability in an MDP

As well as the basic definition of which states are safe and which are unsafe, the MDP structure

introduces additional safety-related properties that must be considered to generate safe policies across

the MDP. As introduced by [3], the agent must also consider two concepts that are defined by the

MDP transition structure: the notions of reachability and returnability.

A state is reachable if it is possible for the agent to transition to the state (possibly in multiple

steps) without entering an unsafe state, starting in the set of states that it has already explored - the

current explored set. Similarly, a state is returnable if it is possible to return from the state to the

current explored set (possibly in multiple steps) without entering an unsafe state.

These two conditions ensure that the exploring agent does not choose to visit a state that there is

not a safe route to, and does not become trapped in an ‘island’ of safe sets without any way to return

and continue exploring. If the agent only explores states which satisfy these two requirements then the

currently explored set will always consist of states that are reachable and returnable from each other.

Additionally, this current explored set must consist of states that are safe - as the agent has already

visited each of them (and had they not been safe, the agent would already have failed its task).

14

2 Theoretical Approach

2.3.2 Formal Problem Definition

Other than ensuring the safety of the robot, the desirable outcomes for the completed exploration

are to gain knowledge of the dynamics of the safety feature and to determine to a high degree of

confidence the set of states that are safe, reachable and returnable.

The safe exploration problem can now be defined as:

Problem definition: Safe Exploration in a U-MDP

Given a safety function g() over the U-MDP state features, minimise the expected cumulative cost

to determine the mapping o(sk) to a given accuracy ε for all states in the safely reachable and

returnable set of states (from the agent’s initial state), without visiting a state in unsafe.

The requirement to determine o(sk) to ε accuracy only across the predicted safe set is necessary

as the agent is not able to sample unsafe states, so the predictive uncertainty of areas of unsafe

states may be impossible to reduce.

2.3.3 Mapping from Continuous GP Domain to Discrete MDP States

In subsequent sections, predictions from GP models will be used to estimate the mapping o : Sk → Se.

However, the GP prediction is a continuous function over R whereas the unknown state component

of the U-MDP consists of a finite number of discrete unknown state features.

We therefore specify that a value of an unknown state feature Xe in Se is a finite partition of R,

given as Xe = {I1, . . . , Ip} where Ii are non-overlapping intervals of R such that ∪i=1,...,pIi = R.

For example, a GP model estimating water depth could map to an unknown state feature for

water depth in metres, where the intervals are {(depth < 10), (10 ≤ depth < 20), (20 ≤ depth)}.

This would result in the water depth state feature having 3 valid discrete values. Each unknown

state feature value is equivalent to an interval I. An estimation of o(sk) would therefore map each

known state (which could be a combination of x position and y position known state features)

to the water depth interval at that location.

A potential area for future work is a more in-depth investigation into the discretisation, and how

this can be carried out while still maintaining important properties of the underlying continuous

distributions. This topic is discussed in [22] and [23].

The choice of interval definitions requires some thought, depending on the exploration task. If the

safety specification function is a simple upper or lower bound with value b on one or more unknown

state features, and the exploration approach from Section 2.5 or Section 2.6 is used, then the most

15

2 Theoretical Approach

efficient approach is to partition each state feature into two intervals as {[−∞, b), [b,∞]}. Reducing

the state space dimensionality makes the constrained reachability problem (2.4) easier to solve.

The choice of intervals does not affect the resolution of the data collected during the exploration, as

the GP regression itself still provides the continuous estimation of the state features in the environment.

However, reducing the number of intervals gives a less finely grained discretisation and therefore

reduces the resolution of the data available to the model solver that solves the constrained reachability

problem. This reduces the effectiveness of techniques that carry out more complex path calculations,

such as the approach proposed in Section 2.7.

2.4 Top-Level Exploration Algorithm
for Probabilistic Transition Models

The first task identified for the project was to build upon previous safe exploration algorithms covered in

the literature review section - in particular, the SafeMDP exploration algorithm proposed by Turchetta

et al. [3]. These should be extended to be applicable to MDPs with non-deterministic transition

functions, while making use of the new formalism (Definition 8: U-MDP).

For clarity of this report, we split the overall exploration algorithm into two parts. This section

details the high-level exploration loop where the agent carries out its exploration task using a provided

timestep-dependent policy and goal. Sections 2.5.1 and 2.6.2 present different variants of the algorithm

used for generating goal states and policies.

2.4.1 U-MDP Exploration Algorithm

The exploration flow diagram (Figure 2.4) provides a high-level overview of the exploration approach,

which is given in more detail by Algorithm 2.1. To start, a U-MDP to be explored is provided along

with observations of the starting explored set and initial estimates of the covariance structure in the

form of kernel hyperparameters. The starting set of observed states must be safe, and each state

must be reachable and returnable (Section 2.3.1) to the other states in the starting set. Without

this starting set there is not sufficient information to begin exploration.

As well as requiring a starting set, the performance of the exploration algorithm depends on several

interactions between the GP kernel, the layout of the discrete states in space, and the dynamics of

the unknown state features. These are discussed in depth in Section 2.1.3, but the key requirement

is that the GP kernel chosen (including the hyperparameter priors set on the kernel) is able to fully

capture the dynamics of the unknown state features.

Similarly to other safe exploration algorithms, the core of the exploration approach is for the agent

to use its current knowledge of the U-MDP to determine which goal state it should next visit in order

16

2 Theoretical Approach

Start

Input U-MDPMo,
initial observations o

(
SEk,0

)
and safety specification g

Take noisy observation
o(sk,t)

Update GP model
GPt

Determine new goal sgoal,t and policy πt
using Algorithm 2.2 or Algorithm 2.3

Found new
goal?

Reached
goal state?

Is policy
safe?

End

Take action defined
by policy πt, update

state st+1 and
increment t

Run policy safety
check (Section 2.4.2)n

y

y

n

n

y

Figure 2.4: Flow diagram of high-level U-MDP exploration algorithm.

Algorithm 2.1 Safe Exploration of a U-MDP
Input: U-MDPMo, safety function g, kernel k(s, s′), start observations o(SEk,0)
Output: Explored U-MDP - in the form of an estimation of o(s)
1: st ← s, sgoal,t ← sk,t
2: for t = 1,2,.. do
3: if sk,t = sgoal,t or PolicyCheck(sk,t, πt) > (1− Pmin) then
4: SEk,t ← SEk,t−1 ∪ {sk,t}, SUk,t ← Sk \ SEk,t
5: Observe o(sk,t) (with noise), update and optimise GPt
6: Get a new goal state
7: end if
8: Take action πt(st) and update st+1 according to observed outcome
9: end for

to best improve its knowledge. When the agent reaches its current goal, or a policy safety check

(Section 2.4.2) fails, then an observation is carried out at the current state and a new goal and policy

are chosen. The policy safety check is carried out after each action to check whether the outcome of

the action has unexpectedly made the agent sufficiently unsafe that it should re-plan its current goal.

st is the agent’s state at timestep t, and sk,t is the known state component of that state. πt

and sgoal,t are the agent’s policy and goal at timestep t, respectively. SEk,t is the set of known states

that have been visited by the agent (the explored set), and SUk,t is the remainder of known sets (the

unexplored set). These sets are updated in line 4, by adding the newly observed state to the explored

17

2 Theoretical Approach

set and removing it from the unexplored set. When a new goal is chosen, it is chosen from SUk,t. Note

that although t is used as an index, the terms above do not necessarily change on each increment

of t, as t is the timestep increment determined by how many actions the agent has carried out and

these sets, policies and goal states do not necessarily change after every agent action.

When new observations are carried out (line 5), the GP model is updated with the observation

and its hyperparameters are optimised. The new GP model GPt (with all observations up to this

timestep t) is made available to the goal and policy generation algorithm.

Computing the GP regression and generating new goals and policies is computationally intensive.

The algorithm therefore aims to observe and re-plan only when it is necessary for exploration. If

the time taken to carry out an observation is negligible, then it would be possible to do this while

travelling between states rather than only observing the function at goal states. However, in many

scenarios there is a time requirement on collecting each observation.

We also define a minimum safety probability measure Pmin. This is designed to specify the level

of safety certainty adhered to while exploring. We typically set it to Pmin = 0.95 to correspond to

the common choice of 2 standard deviations of certainty used in other safe exploration literature.

Increasing Pmin increases the certainty that states classified as safe are truly safe to visit, but also

may lead to the agent being too pessimistic and avoiding states that are in fact safe.

2.4.2 Policy Safety Check

The policy safety check PolicyCheck(sk,t, πt) estimates the probability of the agent ending up in an

unsafe state, i.e. a state that does not satisfy the safe constraint, within the next n timesteps, while

executing its current policy πt starting in the current state st. If the calculated probability is greater

than (1− Pmin), the agent abandons its current goal, takes a measurement and continues. This check

is designed to handle situations where the probabilistic transition model of the MDP may cause the

agent to “accidentally” fall into a state where it must generate a new policy to safely leave that state.

Given an MDP, this is a standard property that can be calculated using (2.21). The MDP

structure used for this calculation differs for each of the approaches in Sections 2.5 and 2.6 and

is described in detail in those sections.

PolicyCheck(s, π, n) =


1, if g(s) = 0, else
0, if n = 0, else∑
s′∈S T (s, π(s), s′) · PolicyCheck(s′, π, n− 1), otherwise

(2.21)

The choice of how many steps n to check the policy safety over should be chosen based on a number

of factors. If the MDP has many actions at each state then the number of states that have to be

checked increases exponentially with the number of steps. On the other hand, if the MDP transition

18

2 Theoretical Approach

structure means that it is possible for the agent to get “stuck” on a path of states leading to an unsafe

area, then a larger n will allow it to see this danger coming more easily.

2.4.3 Probabilistic Determination of Reachability and Returnability

As well as the requirement that the state be safe, SafeMDP [3] limits its search for a new goal state to

states that fulfil the reachability and returnability criteria defined in Section 2.3.1. With deterministic

transition functions, SafeMDP can simply determine whether states satisfy these criteria using Dijkstra’s

algorithm. It also restricts its reachability check to only consider states that can be reached in a single

step from the explored set - although the return path can take an arbitrary number of steps.

In the next two sections, we develop algorithms for determining a new goal state, in which we

will also wish to carry out reachability and returnability checks. To support probabilistic transition

models (which SafeMDP does not), we must define reachability and returnability to/from a state as

probabilities that take into account the probability of falling into an unsafe state at each step taken

towards/back from the state. In the goal choice algorithms, these probabilities are compared to Pmin

to determine whether the agent considers the reachability and returnability probabilities of a state to

be sufficiently high. Reachability and returnability probability calculations are based on constrained

reachability optimisation problems and are defined for each approach in Sections 2.5 and 2.6.

2.5 Confidence Bounds Approach to Path Planning

Several safe exploration approaches [3, 8] make use of the GP confidence bounds on the safety

function to determine which states are safe, to a certain degree of confidence. For a task with

a safety specification that the safety function value must be above a certain threshold, the lower

confidence bound function of the GP prediction would be used. All states where the lower confidence

bound prediction is below the safety threshold would be classified as unsafe. An identical approach

using the upper confidence bound would be used if the agent was instead required to maintain the

safety function value below a specified upper limit.

Figure 2.5 shows an example of the bounds approach to safety classification for a lower-bound safety

specification. In this example, the agent should not choose to attempt to visit any of the states in the

right-most green safe area - although they are considered safe, they are not reachable or returnable

to/from its current explored set, without passing through an area of states considered to be unsafe.

The confidence bound functions depend on the the choice of bound certainty value - often taken

to be 2 standard deviations for 95% certainty on classifying states as safe. This is equivalent

to the definition of Pmin for our algorithms. Section 3.2.1 discusses the implementation and re-

sults of the methods in this section.

19

2 Theoretical Approach

−5 0 5 10 15
−10

−5

0

5

10

Agent location

Data Points

Mean Prediction

Lower Confidence
Bound Function

Safety Bound

Figure 2.5: Illustration of the confidence bound concept of safe set determination. The colour of the bottom
bar indicates whether the agent considers states at that x location safe (green) or unsafe (red).

In this section, we model the exploration U-MDP as a confidence bound MDP (CB-MDP). We

do this by estimating o(sk) (which is a deterministic mapping in the U-MDP) with a deterministic

mapping based on our “worst-case” assumptions about the which value of Se will be observed at sk,

according to the current GP model GPt. This results in a probabilistic transition function for the

CB-MDP that augments the known probabilistic transition function of the U-MDPMo to add the

transition to the corresponding unknown state for the known state being transitioned to.

This probabilistic transition function encodes the dynamics of both the known and unknown

state features. For a given timestep t, we define CBt : Sk → Se such that CBt(sk) = I where I is

the interval containing the value of the appropriate confidence bound function (upper or lower

as described above) predicted at sk.

Definition 9 (Confidence Bound MDP). Given U-MDPMo and CBt : Sk → Se at timestep t, the

CB-MDP at timestep t is defined asMb
t = 〈Sk × Se, s, A, T bt , C〉 where:

T bt ((sk, I), a, (s′k, I ′)) =
{
T o((sk), a, s′k), if CBt(s′k) = I ′,

0 otherwise
(2.22)

2.5.1 Confidence Bound Goal and Policy Generation Algorithm

Algorithm 2.2 is similar to the goal selection component of SafeMDP [3], but has been augmented

to make use of the new U-MDP formalism and to use a CB-MDP to determine which goal state

the agent should choose next in order to explore. As well as its use for carrying out reachability

and returnability checks, the current CB-MDP model (the model obtained from the GP with the

current data points) is used for the policy safety check (Section 2.4.2).

20

2 Theoretical Approach

Algorithm 2.2 CB-MDP Goal State Choice
Input: CB-MDPMc

t , SEk,t, GPt, current state st, g, k(s, s′), unexplored set SUk,t
Output: New goal state sgoal,t, new policy πt
1: Scand ← {sk ∈ SUk,t | g((sk, CBt(sk))) = 1 and Σt(sk) > ε}
2: while Scand 6= ∅ do
3: scand ← arg maxs∈Scand Σt(s)
4: preach ← Prmax

Mb
t ,st

(reachunsafe,{(scand,I) | I∈Se})
5: preturn ← Prmax

Mb
t ,scand

(reachunsafe,{(sk,CBt(sk)) |sk∈SEk,t}
)

6: if preach > Pmin and preturn > Pmin then
7: sgoal,t ← scand
8: return sgoal,t, and corresponding policy πunsafe,{(sgoal,t,I) | I∈Se}
9: end if

10: Remove scand from Scand
11: end while
12: No goal state identified, end exploration.

Intuitively, a “good” goal state should provide information when observed (i.e. have a high GP

predictive variance before observation). The goal state chosen is the state with highest GP predictive

variance that fulfils three criteria: safety of the state itself, reachability safety and returnability safety.

In line 1, the algorithm restricts the set of candidate goal states to states that are considered safe

given the worst-case confidence bound prediction, and that we do not already have good knowledge of.

If a state s has GP predictive variance Σt(s) < ε (where the GP is GPt, given the current data points

at time t) then it is not useful to visit according to the safe exploration problem formulation.

Reachability and returnability probability calculations are carried out on candidate states with the

highest GP predictive variance - these calculations are based on constrained reachability problems over

the current CB-MDP with the forbidden set defined as the set of unsafe states according to the safety

function, taking the calculated satisfaction probability as the corresponding probability. We assume

here that the unit of the cost structure of the U-MDP is the time required to carry out the action, but

this depends on what exactly the robot system is trying to minimise when it carries out path planning.

For the reachability check (line 4), the constrained reachability optimisation problem is set up with

the initial state as the current state st, and the goal state defined as the in the CB-MDP where the

known component is the candidate state scand. As well as storing the satisfaction probability, the policy

from the solution of the reachability problem is also stored as this is the correct policy to be returned

for the agent to use to reach the new state - if this candidate state is chosen as the goal state. How

these terms relate to the solution of the constrained reachability problem is explained in Table 2.1.

For the returnability check (line 5), the constrained reachability optimisation problem is set up

with the initial state as the candidate state scand, and the goal set defined as the already explored

(hence surely safe) states. If the two probabilities are greater than Pmin when compared on line

6, then the candidate state is returned as the new goal state along with the corresponding policy

21

2 Theoretical Approach

to reach it. If no new goal state can be identified, then the exploration terminates in line 12 as

specified in the problem definition in Section 2.3.2.

2.6 Estimated MDP Approach to Path Planning

In this section, we model the exploration U-MDP as a Estimated MDP (Est-MDP). This is a new

formalism that was proposed and developed extensively during the course of this project. It is designed

to be a richer underlying model than the confidence bound function MDPs used in previous literature,

by directly incorporating the agent’s current GP estimates into the MDP model used for planning.

We also pair this formalism with a more advanced goal state choice algorithm that scores potential

goal states on several criteria rather than solely on GP predictive uncertainty. Section 3.2.2 discusses

the implementation and results of the methods in this section.

2.6.1 Estimated MDP Structure

a1 Pt × GPt(sk,2 , I1)

Pt × GPt(sk,2 , I2)

Pt × GPt(sk,2 , I3)

Pt × GPt(sk,2 , I4)

GPt(sk,2)
(1− Pt)

a1 Pt

(1− Pt)

(sk,2 , o(sk,2))

(sk,2 , I1)

(sk,2 , I2)

(sk,2 , I3)

(sk,2 , I4)

(sk,1 , I1)

(sk,1 , I1)

T o :

T e
t :

Figure 2.6: Example combination of the probabilistic transition function and the current GP distribution over
a single unknown state feature variable to create the Est-MDP transition structure.

We model the U-MDP by estimating o(sk) (which is a deterministic mapping in the U-MDP) with

a probability distribution GPt(sk) representing our current estimate of the probability of observing

the different values of Se at sk, according to the current GP model GPt.

This results in a probabilistic transition function for the Est-MDP that is a result of weighting the

known probabilistic transition function of the U-MDPMo by GPt(sk). This probabilistic transition

function encodes the dynamics of both the known and unknown state features.

22

2 Theoretical Approach

For a given timestep t, we define GPt : Sk × Se → [0, 1] such that GPt(sk, I) is the probability,

predicted by the GP taking into account the observations made up to timestep t, of o(sk) ∈ I. This can

also be expressed as GPt(sk, .) which denotes the probability distribution over Se represented by GPt.

Definition 10 (Estimated MDP). Given U-MDPMo and GPt : Sk × Se → [0, 1] at timestep t, the

Est-MDP at timestep t is defined asMe
t = 〈Sk × Se, s, A, T et , C〉 where:

T et ((sk, I), a, (s′k, I ′)) = T o((sk, I), a, s′k)GPt(s′k, I ′) (2.23)

Figure 2.6 illustrates the construction of T et , where integration over the probability density is used

to determine the transition probabilities to assign to each interval. The GP model at the current

timestep GPt is predicting that I2 and I3 are the most likely values of the mapping o(sk,2).

2.6.2 Estimated MDP Goal and Policy Generation Algorithm

Algorithm 2.3 makes use of the Est-MDP to determine which goal state the agent should choose to

explore. As well as its use for carrying out reachability and returnability checks, the current Est-MDP

model is used for the policy safety check (Section 2.4.2). As before, a “good” goal state should

provide information when observed (i.e. have a high GP predictive variance before observation).

However, the agent should also consider the time taken to reach the goal state, and how how

certain it is that it is safe to reach it and return from it. None of these factors are considered

by the SafeMDP [3] family of algorithms.

Algorithm 2.3 Est-MDP Goal State Choice
Input: Est-MDPMe

t , SEk,t, GPt, current state st, g, k(s, s′), unexplored set SUk,t
Output: New goal state sgoal,t, new policy πt
1: Scand ← {sk ∈ SUk,t | P

safe
t (sk) > Pmin and Σt(sk) > ε}

2: while Scand 6= ∅ do
3: Take next batch of N states SN with highest uncertainty in Scand
4: for scand ∈ SN do
5: preach ← Prmax

Me
t ,st

(reachunsafe,{(scand,I) | I∈Se})
6: preturn ← Prmax

Me
t ,scand

(reachunsafe,{(sk,o(sk)) |sk∈SEk,t}
)

7: if preach < Pmin or preturn < Pmin then
8: Remove scand from SN
9: end if

10: end for
11: if SN 6= ∅ then
12: sgoal,t ← arg maxs∈SN score(s)
13: return sgoal,t, and corresponding policy πunsafe,{(sgoal,t,I) | I∈Se}
14: end if
15: end while
16: No goal state identified, end exploration.

Again as before, there are three checks carried out to identify a valid goal state among the set

of possible candidate states: safety of the state itself, reachability safety and returnability safety.

23

2 Theoretical Approach

The state with the highest score (goal score function - detailed in Section 2.6.3) that passes all 3

checks is returned as the new goal state. The policy returned from the algorithm is the policy

from the solution of the reachability check as this is the correct policy for the agent taking a

path from its current state to the goal state.

In line 1, the algorithm restricts the set of candidate goal states to states that are considered safe

with high probability, and that we do not already have good knowledge of. Again, if a state s has GP

predictive variance Σt(s) < ε (where the GP is GPt, given the current data points at time t) then it is

not useful to visit according to the safe exploration problem formulation. P safe
t (sk) is defined as the

probability of state sk being safe according to the current probability distribution GPt(sk).

Reachability and returnability probability calculations are carried out on batches of N states

(where N is a user-chosen parameter) with the highest variance and therefore likely highest score.

As determining these probabilities requires solving at least one1 unique constrained reachability

optimisation problem for each candidate state, it is computationally expensive to compute scores for

too many low-scoring states that are unlikely to be chosen as the next goal.

Both reachability and returnability probability calculations are based on constrained reachability

problems over the current Est-MDP with the forbidden set defined as the set of unsafe states

according to the safety function, taking the calculated satisfaction probability as the corresponding

probability. Again, we assume that the unit of the cost structure of the U-MDP is the time required to

carry out the action, but this depends on what exactly the robot system is trying to minimise

when it carries out path planning.

Term in constrained reachability problem (Equation 2.4) Path planning output

πF,G Satisfaction policy π

PrπF,GM,s (reachF,G) Satisfaction probability preach or preturn

EπF,G
M,s (cumulF,G) Expected time cost ts

Table 2.1: Identification of key terms in the constrained reachability problem, and their use in goal
identification and task planning.

For the reachability check (line 5), the constrained reachability optimisation problem is set up

with the initial state as the current state, and the goal set defined as all states in the Est-MDP where

the known component is the candidate state scand. As well as storing the satisfaction probability,

the policy and expected cost of the reachability problem are also stored. The source of these terms

is explained in Table 2.1. The expected cost is a variable in the goal state scoring function, and
1The returnability constrained reachability problem can actually be solved in parallel for all states. This is because the

goal state G (set to the agent’s current state) and forbidden states F are the same for each problem, and value iteration
solution method [24] simultaneously solves the problem for all initial states.

24

2 Theoretical Approach

the policy is stored to be returned if this state is chosen as the next goal. For the returnability

check (line 6), the constrained reachability optimisation problem is set up with the initial state as

the candidate state scand, and the goal set defined as the already explored (hence surely safe) states.

o(sk) denotes the (possibly noisy) observation associated to sk.

These probabilities are compared to Pmin in line 7, which is our defined measure of the level of

risk that the agent is willing to accept during exploration. A new goal cannot be identified when

the mapping o(sk) is known within ε uncertainty for all reachable unexplored known states, and the

exploration algorithm will terminate in line 11 as specified by the problem definition in Section 2.3.2.

2.6.3 Goal Scoring Function

The goal scoring function scoret : Sk → R is designed to indicate how beneficial a state would be to

visit and observe, given the knowledge of the Est-MDP at time t. There are many potential approaches

to the problem of ranking goal states to visit: different approaches include information theoretic

approaches and maximising mutual information between sample points and points of interest.

The scoring function proposed here takes into account the the GP’s uncertainty at that state,

the expected time cost to reach that state from the current state ts = Eπ
M,s(cumulF,G) (3), and

the reachability/returnability probabilities for the state.

scoret(sk) = (Σt(sk))(ts)−γ1(preach · preturn − P 2
min)γ2 (2.24)

where Σt(sk) is the current GP predictive variance at the known state sk. The γ values provide relative

weightings on different parameters. Setting γ1 = 1 results in the first two terms having units of uncer-

tainty (or information) per unit time, which should intuitively be maximised for an exploration task.

The expected time cost ts can also be adjusted to take into account the measurement time

required to take a reading, if the length of time required to observe the environment feature is of

the same order as travel times between states. Alternatively, this could be integrated directly into

the MDP by specifying a measurement action at each state, with the associated time cost. The

LTL constrained reachability formula (Definition 6) would be altered to add the requirement to

take a measurement action after arriving at the state.

This would potentially allow for more complex measurement behaviour e.g. probabilistic outcomes

for whether the measurement is a success. It would also provide the model solver with better information

on the expected cost of taking measurements - which would be useful in the potential extensions

to time-bounded exploration discussed in Section 5.2.

25

2 Theoretical Approach

2.7 Extension of Estimated MDP Approach
to Multi-Step GP Propagation

a1

GPt(sk,2)

(sk,2 , I4)(sk,1 , ·) (sk,3 , ?)
a2

GPt(sk,3) | osim(sk,2)

osim(sk,2)

Agent located
at state sk,1 ,
planning a
to sk,3

This GP is the result of
assuming that the agent
has visited (sk,2 , I4)

I1

I2

I3

I4

I3

I4

Figure 2.7: Illustration of multi-step path planning where the GP transition function generation is based on
GPs that are updated at each step. Using this diagram, the agent is considering a route that starts with a

transition to (sk,2, I4).

Although the Est-MDP construction in Section 2.6.1 allows reachability and returnability cal-

culations to be made based on the agent’s current GP model, these calculations are effectively

estimates. A more accurate estimate can be produced (at the cost of additional computation time)

by taking into account the unknown state component of the agent’s state when generating transition

probabilities in T et using the GP model (Section 2.6.1).

For the example illustrated in Figure 2.7, when calculating reachability and returnability probabilities

the agent should take into account that if it transitions to (sk,2, I4) then it should condition GPt(sk,3)

on this - which will result in a different distribution (and therefore different transition probabilities)

than if it had transitioned to (sk,2, I1) (which would likely have resulted in assigning much more

probability mass to I1 and I2, rather than to I3 and I4 as it has in the figure).

One method of conditioning the GP predictions on possible unknown state feature values is to

add simulated measurements osim to the GP’s dataset for the purposes of planning. This would have

to make use of a heteroscedastic GP form (Section 2.1.3) to assign the simulated measurements the

correct measurement noise to roughly cover the interval being conditioned on - I4 in Figure 2.7.

A more elegant form of GP conditioning could possibly be developed based on a non-standard

GP classification problem where the labels correspond to Est-MDP intervals.

This could also be extended to condition on more than one transition - which would involve

adding more than one simulated observation to the GP dataset. The size of the problem grows

exponentially with the number of steps planned ahead in this way.

If the agent is able to take measurements as it moves, then keeping the set of policies generated

during the path planning may enable it to dynamically switch to the optimal policy that reflects

the ground-truth it is seeing as it travels along the path.

26

3 Implementation and Experiments

3.1 Software Architecture

Safe exploration script

- Main script

- Safe exploration
algorithm

- Interface with ROS
(Section 4), if used

- MDP data structures:
state, policy, transition
structure, etc.

- PRISM bridge to load
Rapport models into
PRISM

Rapport

- Constrained reachability
problem solver

Input: model and
LTL specification
Output: satisfaction
probability, policy and
expected cost

PRISM Model Checker

Environment simulator

- Generation of MDPs

- Measurement simulation

- Input of environment
specification from CSV
or from world generator

PRISM output decoder

- Transformation of
PRISM model output
into Rapport formats

World generator

- Generation of simulated
worlds with distribution
of hazards

Output plot generator

- Production of progress
plots for exploration
and experiment plots

Key: External origin softwareProject software ORI GOALS Lab software

- Gaussian process model
implementation

GPy

- Hardware accelerated
Gaussian process model
implementation

GPflow

Figure 3.1: Software architecture diagram, showing the custom software written for the project as well as
other tools used.

Figure 3.1 shows software components that make up the implementation. In general, the aim is

for the design to be a reusable piece of code that integrates with ORI in-house software. All project

code was written in Python, and version control was through Git/GitHub. An implementation in

a compiled language such as C++ would increase the performance of the code - this is discussed in

Section 3.3.1. Rapport is a probabilistic planning framework that enabled faster prototyping by not

having to implement the basics of the standard structures defined in Section 2.1.

Two software libraries were tested for handling GP models, and both fulfilled the GP requirements

27

3 Implementation and Experiments

for the project. Each of GPy [25] and GPflow [26] have different approaches to carrying out GP

regression and hyperparameter optimisation. GPflow uses TensorFlow as its back-end engine, which

enables acceleration with graphics hardware as opposed to GPy which is purely CPU-based. The

differences between the two options are discussed in Section 3.3.1.

Solution of constrained reachability problems was carried out with PRISM [27], a probabilistic

model checker written in Java. The PRISM Bridge component in Rapport enabled loading of MDPs into

PRISM to be solved, and a custom piece of code transformed PRISM’s output back into a usable format.

As well as the two exploration algorithm variants proposed in Sections 2.4 to 2.6, the SafeMDP algo-

rithm [3] was also implemented, to support comparisons between algorithms in the experiments below.

3.2 Evaluation in Simulation

Evaluation in simulation consisted of running the safe exploration algorithms on simulated maps which

included a hazard distribution function defined across the map. The known state features of the MDP

are x position and y position. For these simulations, a single unknown state feature represents the

unknown environmental hazard value, which we place an upper or a lower safety bound on. In MDP

form, the map is represented as a 4-connected grid world where the agent has an “up”, “down”, “left”

and “right” action defined at each state (apart from states at the edges). The outcomes of these

actions are probabilistic for some experiments below, and deterministic for others.

3.2.1 Programmatically Generated Water Depth Model

For initial testing of exploration algorithms, environmental hazard functions over the map were

generated from a multivariate normal distribution. The covariance matrix of the normal distribution

was generated in the same manner as the covariance matrices in Section 2.1.3, using a RBF (2.10)

kernel with lengthscale l = 4.0 and variance σ = 0.5. The hazard functions are therefore effectively

sampled from a GP prior distribution.

Although the exploration algorithm did not have access to the kernel hyperparameters and was

left to optimise those as part of the exploration algorithm, this is not a representative experiment

as the environment was drawn from a GP prior distribution and was therefore clearly capable of

being modelled by the exploration GP. These tests did however demonstrate working function of the

exploration algorithms, and also demonstrated that the U-MDP based safe exploration algorithms

outperform SafeMDP by planning new goals to measure that are several steps from the current

safe set. This is further discussed in Section 3.2.3.

Figure 3.2a shows an example of a map produced. This is interpreted as an underwater environment

where the agent moves around the floor but does not know the depth distribution. It is able to measure

28

3 Implementation and Experiments

x (m)
0 5 10 15 20

y
(m

)

0
5

10
15
20

z
(m

)

0

2

4

6

Space of Safe States

Space of Unsafe States

Safety Limit (Lower Bound)

(a) Ground-truth map of the “underwater” environment.

x (m)
0 5 10 15 20

y
(m

)

0
5

10
15
20

z
(m

)

0

2

4

6

Upper Confidence Bound

Mean GP Estimate

Agent Position

Lower Confidence Bound (Above Limit)

Lower Confidence Bound (Below Limit)

(b) Example exploration progress by the agent.

Figure 3.2: Example plot output of the simulated water depth environment, with a safety specification stating
that the agent cannot visit any states below z = 1.0. The z position of the floor at each (x, y) coordinate is

unknown to the agent.

its z position only at its current location. The safety specification used for this example is z > 1.0, and

the safe and unsafe areas of the map are coloured according to this specification. The figure shows a

small island of safe states around (x = 10, y = 0) - these are however not reachable or returnable from

the area that the agent starts off in, so the agent should not pick any of these states as goals to observe.

Figure 3.2b shows the agent, currently at (x = 6, y = 18), carrying out an exploration of the map.

The transition model is probabilistic: each action has a 0.7 probability of the agent ending up in the

intended state (the state one step in the direction of the action), a 0.1 probability each of ending up either

side of the intended state (in the orthogonal direction to the action direction), and a 0.1 probability of

ending up in its original state. If one of these states is invalid (for example, when attempting to move

along the edge of the map) then extra probability is assigned to the agent remaining in the original state.

The agent’s current knowledge in the form of a GP is indicated by the bounds and mean estimate

shown in the figure. The mean estimate is colour mapped to show height more clearly. The lower

bound is shown as either yellow if the agent believes the corresponding state is safe (i.e. if the

lower confidence bound function is above the safety bound at that coordinate), or red if the agent

believes the state is unsafe. The figure shows the confidence bounds diverging from the mean estimate

(representing greater predictive uncertainty) for states that are further away from the set of states

the agent has measured. The rate of divergence depends on the (optimised) lengthscale and variance

hyperparameters of the GP kernel the agent is using.

29

3 Implementation and Experiments

3.2.2 Single Radiation Source Dataset

The experiments in this section, and Section 3.2.3, are designed to validate application of the safe

exploration techniques to real-world situations where a mobile robot must investigate a radioactive

environment. Given the way we have posed the safety problem, radiation is a good example of a

safety hazard to mobile robots: it has the ability to physically damage them (or require them to

be disposed of if they become sufficiently radioactive themselves), and it is only measurable in the

location the robot is currently in. This dataset was sourced from the Neutron Lab at the University

of Lancaster1 and was captured by a remotely operated vehicle.

The raw data format is a log of Gamma radiation exposure counts and corresponding 2D positions,

recorded at constant 1 second timesteps. An MDP was created from this dataset, resulting in a

known state space of 554 states and a single unknown state variable to represent radiation counts

at an (x, y) coordinate. The transition function defined allows the agent to move to up to 6 closely

neighbouring known states. This is shown in Figure 3.3a, with the MDP transitions superimposed

onto a LIDAR-created map of the physical environment. Also shown is the approximate location

of the Gamma source producing the radiation. For exploration, observations of the radiation level

are taken directly from the dataset at the relevant locations.

0 2 4 6

x (m)

0

1

2

3

4

y (m)

MDP
Transition

Source

(a) Physical environment map with superimposed
MDP, generated from Gamma radiation dataset
to form a relatively densely connected graph.

1 2 3 4 5

x (m)

1

2

3

y (m)

Data points

Low value

High value

0

5

10

15

20

25

30

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s−

1
)

(b) Predicted posterior distribution over the
safety feature, from a GP model trained

on the entire dataset (red points).

Figure 3.3: Plots based on Gamma radiation dataset.

Figure 3.3b shows the posterior distribution of a GP model trained on the full dataset. The Matérn

3/2 kernel used gives a good fit for the expected behaviour of a radiation source, as it is symmetrical

and falls off in a roughly 1
r2 manner as physics would suggest [19].

1With thanks to Dr Andrew West at the University of Manchester, for supplying the dataset and physical maps.

30

3 Implementation and Experiments

An experiment was carried out to prove that the exploration algorithm developed is capable of

building a comparable posterior distribution to that of a GP trained on the entire dataset (Figure 3.3b),

while only sampling points that are safe. This would verify that it is able to safely produce a useful,

predictive model from exploration alone. It is not feasible to directly compare GP models, as they are

distributions over an infinite number of functions. Therefore, for the experiment, we characterise the

difference between the posterior distribution of the exploration GP and the posterior distribution of

the full dataset GP by the Kullback–Leibler (KL) divergence between the two distributions, across

n = 554 sample points - one at each state. This is calculated as in Section 2.2.1.

We carry out an exploration of the MDP with a safety specification defined as an upper bound on

the radiation level, at 25 counts/second. The exploration algorithm is the Estimated MDP approach

in Section 2.6, with Pmin = 0.95, batches of N = 3 and a Matérn 5/2 kernel used for the GP. The

goal scoring function (Section 2.6.3) parameter weightings were set as γ1 = 1 and γ2 = 0.25. As the

approach from Section 2.7 is not used, we simply define two intervals on the radiation level to be

expressed in the MDP uncertain state feature, as described in Section 2.3.3. The initial state was

the top-left coordinate in the map, corresponding to the first sample point in the dataset. Other

than the fixed lengthscale parameter, discussed below, a large uninformative prior distribution was

set on the kernel variance hyperparameter to ensure that the agent did not optimise it to zero while

it was sampling the low-radiation dataset points near its starting location.

0 50 100 150 200

Number of observed states

0

1

2

3

4

5

K
L

d
iv

er
ge

n
ce

to
fu

ll
d

at
as

et
m

o
d

el ×104

Lengthscale Parameter

l = 0.3m

l = 0.4m

l = 0.8m

Figure 3.4: KL divergence between the posterior distribution across the states, from iteratively adding safe
observations, and the posterior distribution from the full dataset GP model.

Running the proposed exploration algorithm on this dataset shows that it is capable of building a

comparable posterior distribution to that of a GP trained on the entire dataset, while only sampling

points that are safe. Figure 3.4 shows the result of the experiment, and illustrates the effect of

different choices of kernel lengthscale parameter.

31

3 Implementation and Experiments

A lengthscale of l = 0.3m causes the agent to be too cautious, as it terminates after 80 observations

believing it has explored the safe set. If the MDP had been created from e.g. a grid map, reducing

the grid spacing between states would stop the agent from terminating this early. Here however,

we are limited to the MDP structure from the dataset.

On the other hand, a lengthscale of l = 0.8m causes the agent to explore rapidly, but it enters an

area of high radiation it is not expecting and fails its safety specification. Overall, this demonstrates

how the lengthscale hyperparameter defines the upper limit on rate of change of radiation in the

environment that the agent should expect.

For a reasonable choice of lengthscale e.g. l = 0.4m used above, the KL divergence converges

towards zero (showing that the agent is building a useful, predictive model) with only ∼ 200 of the 554

available observation states observed. It cannot completely converge to zero as the agent is unable

to sample from unsafe locations. Within this number of steps the agent also correctly estimates the

total number of reachable and returnable safe states to within ∼ 3%.

If the lengthscale is assigned an uninformative prior, it tends to result in a shorter lengthscale

being chosen as the optimum, as the GP will likely initially try to fit the model to the Poisson noise

in radiation counts (for more detail on this see Section 3.3.2). With an uninformative prior assigned,

the agent would therefore be on the cautious side, and the lengthscale could be programmatically

increased slightly if the agent ran out of states to explore.

Different kernel functions were compared on their performance for this experiment. The dataset

MDP is relatively challenging to explore as the maximum rate of change near the gamma source “spike”

is high compared to the physical distance between states in the MDP. The commonly-used RBF kernel

(2.10) did not perform well - with a longer lengthscale it became overly certain on predicting low values

across the map after exploring the low-count states near the starting location. When assigned a short

enough lengthscale it would then switch to modelling the underlying Poisson noise in radiation counts.

The Matérn 5/2 kernel (2.11) makes fewer assumptions about smoothness of the underlying function

being modelled, and as such was much better able to model the sharp spike in the map while exploring.

3.2.3 Multiple Radiation Source Map

The results of the previous section strongly support the ability of the exploration GP to model

the radiation exposure distribution produced by a single low-intensity Gamma source (based on

real-world data), in a way that prevents the agent from breaking its safety specification. This

section therefore extends the algorithm used above to explore a simulated map containing multiple

radiation sources of varying locations and strengths.

32

3 Implementation and Experiments

x (m)

0
1

2
3

4
5

y (m
)

0
1

2
3

4
5

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s
−

1
)

0
10

20

30

40

Space of Unsafe States

Space of Safe States

Safety Limit (Upper Bound)

x (m)

0
1

2
3

4
5

y (m
)

0
1

2
3

4
5

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s
−

1
)

0
10

20

30

40

Space of Unsafe States

Space of Safe States

Safety Limit (Upper Bound)

(a) Two ground-truth maps of the “radiation” environment,
showing which states are safe according to the safety

specification.

x (m)

0
1

2
3

4
5

y (m
)

0
1

2
3

4
5

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s
−

1
)

0
10

20

30

40

Upper Certainty Bound
(Above Safety Limit)

Upper Certainty Bound
(Below Safety Limit)

Mean GP Estimate

Current Position

Current Goal

x (m)

0
1

2
3

4
5

y (m
)

0
1

2
3

4
5

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s
−

1
)

0
10

20

30

40

Upper Certainty Bound
(Above Safety Limit)

Upper Certainty Bound
(Below Safety Limit)

Mean GP Estimate

Current Position

Current Goal

(b) Example exploration progress by the agent for the
corresponding map. The bottom agent has been exploring
for longer than the top agent and has made more progress.

Figure 3.5: Example plot output of the simulated radiation environment, where the agent cannot visit any
states above 28 events per second. The radiation level at each (x, y) coordinate is unknown to the agent.

As radiation from multiple sources should be additive (ignoring low-level background radiation,

which is small compared to the radiation level from the source and is also captured in the GP’s

assumption of measurement noise), maps for these experiments are created by a linear combination

33

3 Implementation and Experiments

of affine transformations of the GP-fitted radiation distribution from the single-source dataset in

Section 3.2.2. These maps can be generated programmatically but (absent a complex automated map-

checking tool) still require manual checking to ensure the map is safely explorable to a reasonable extent

and to identify a start location for the agent. Two example maps, and example agent progress

exploring them, are shown in Figure 3.5.

Each map is a 5m× 5m 4-connected grid world where the agent has an “up”, “down”, “left” and

“right” action defined at each state (apart from states at the edges). The map MDP transitions have

deterministic outcomes, to allow for comparisons between our exploration algorithm and SafeMDP [3],

which does not support probabilistic transition models. With the grid world side length set to 0.2m,

this gives a known state space of 625 states. The upper safety limit is set at 28 counts per second.

These maps were chosen to be a reasonably representative set of different map types, with the number

of sources varying between 1 and 30 and at least half of the states being safe, reachable and returnable.

In this section, we refer to our proposed exploration algorithm as defined in Sections 2.4 and

2.6 as SafeEst-MDP. The exploration algorithm parameters and kernel hyperparameters were set

up in the same way as in Section 3.2.2. To ensure a fair comparison, the GP kernel was the

same for both exploration algorithms and the SafeMDP algorithm implementation included kernel

parameter optimisation (Section 2.1.3) as used in SafeEst-MDP - although this was not explicitly

specified in [3]. SafeMDP as defined in [3] also not does detail the usage of policies to move the

agent around the map, referring to the navigation part of the algorithm as “Safe Dijkstra ... from

st−1 to st”. For implementation simplicity, policies are generated for the SafeMDP implementation

using PRISM [27], despite the constrained reachability problem being trivially solvable for a fully-

connected explored set with deterministic transitions.

Figure 3.6 shows the results of comparing our exploration algorithm (which we refer to as SafeEst-

MDP) with SafeMDP, over a set of 8 simulated maps. The continuous, transparent polygon around the

central line for each algorithm represents the performance over all 8 maps for the algorithm (with the top

of the polygon representing the maximum value of the y axis parameter over the maps, and vice versa for

the bottom of the polygon). The central line represents the mean value across all maps for the algorithm.

The x axis value for all plots is the (normalised) time value. Although the time cost for each

action in the grid world MDP is constant, the maps vary in complexity and safe set size and

take differing amounts of time to explore. For easy comparison, the time variable for each map

is multiplied by a factor that effectively makes the mean completion time equal for each map, to

give representative “error bars” on algorithm performance. The map is considered safely explored

when the maximum GP predictive variance across what the agent currently considers the reachable

34

3 Implementation and Experiments

0 50 100 150 200 250 300

Time t (normalised by map complexity)

0

20

40

60

80
M

ea
n

va
ri

an
ce

in
es

ti
m

at
ed

sa
fe

se
t SafeMDP

SafeEst-MDP

(a) Mean GP predictive variance (across the current estimate of the safe set) vs normalised time for SafeEst-MDP and
SafeMDP.

0 50 100 150 200 250 300

Time t (normalised by map complexity)

0

50

100

150

200

M
ax

im
u

m
va

ri
an

ce
in

es
ti

m
at

ed
sa

fe
se

t SafeMDP

SafeEst-MDP

(b) Maximum GP predictive variance (across the current estimate of the safe set) vs normalised time for SafeEst-MDP
and SafeMDP.

0 50 100 150 200 250 300

Time t (normalised by map complexity)

0

100

200

300

N
u

m
b

er
of

ob
se

rv
ed

st
at

es

SafeMDP

SafeEst-MDP

(c) Cumulative number of states that the agent has taken measurements at vs normalised time for SafeEst-MDP and
SafeMDP.

0 50 100 150 200 250 300

Time t (normalised by map complexity)

0.00

0.25

0.50

0.75

1.00

N
or

m
al

is
ed

es
ti

m
at

ed
si

ze
of

re
ac

h
ab

le
sa

fe
se

t

SafeMDP

SafeEst-MDP

(d) The agent’s estimate of the size of the safe, reachable set vs normalised time for SafeEst-MDP and SafeMDP.

Figure 3.6: Comparison plots, on several criteria, between SafeEst-MDP and a SafeMDP baseline. The x axis
for each plot is normalised so that it takes roughly the same time to complete, to enable better comparison.

35

3 Implementation and Experiments

safe set is less than ε = 10.0 (corresponding to a standard deviation of 3.3 counts per second), as

defined in Section 2.3.2. The mean completion time is defined as the mean of the two times taken

by the two algorithms to reach a safely explored state. Note that the algorithms were allowed to

keep running past the completion times for Figure 3.6.

Figures 3.6a and 3.6b show plots of the mean and maximum variance across the agent’s current

determination of the reachable safe set. SafeEst-MDP clearly is much faster at reducing both of

these than SafeMDP: on average, over all tested maps, our proposed algorithm is able to determine

the radiation level at all reachable safe states (to within ε variance) in 52% of the time compared

to SafeMDP. This is largely due to SafeEst-MDP’s ability to plan routes to goal states that are

multiple steps away from the current safe set (as opposed to SafeMDP which only considers neighbours

to the current safe set), as well as the use of a significantly more complex goal scoring heuristic.

This scoring heuristic disincentivises the agent from taking long routes to observe states with only

slightly higher GP predictive variance than much nearer states.

This is especially pronounced for the case of maximum GP predictive variance, where some safe states

remain with very high predictive uncertainty even towards the end of exploration where mean predictive

variance is converging to zero. This is likely due to SafeMDP’s concept of expander states, detailed below.

As well as being more time efficient, Figure 3.6c demonstrates that SafeEst-MDP carries out

observations much less frequently than SafeMDP. On average across the maps, it requires 56% fewer

observations to reach ε maximum GP predictive variance. Many of the differences in exploration

speed between the two algorithms would therefore be compounded if a time cost was added to the

act of taking observations as well as for moving between states.

Figure 3.6d details the two algorithms’ progress as they attempt to determine the size of the reachable

safe set. Again, to make the results comparable between maps, the y axis is defined as the proportion

of the actual number of safe reachable states for each map, giving 1.0 as the correct determination. For

both algorithms the mean line and polygon bounds are monotonic increasing to 1.0 - this demonstrates

that both algorithms explore in a safe manner (with our choice of Pmin and GP kernel parameter priors)

and do not determine a state to be safe but later declare it unsafe with more information available.

It is also worth noting that, although the exploration algorithms did not cause the agent to fail

the safety specification for any of the tested maps, the Est-MDP formulation results in better robot

safety. The bounds-based approaches including SafeMDP do not differentiate between states that

are safe with probability > Pmin, whereas the Est-MDP formulation takes into account the exact

safety probability of each state, so for example is able to preferentially choose a path along states

with e.g. 99% safety probability rather than 95% safety probability.

36

3 Implementation and Experiments

3.2.4 Expander State Determination

Quickly determining the size of the safe set is explicitly stated as the goal of SafeMDP in [3], and

SafeMDP appears to have a slight advantage over SafeEst-MDP at this task as SafeMDP’s plot

converges marginally more quickly to 1.0. Similarly to the maximum GP predictive variance plot, this

is likely due to SafeMDP’s use of the concept of expander states. Of the states that are 1-step reachable,

returnable, and safe, SafeMDP prioritises any states that are in the optimistic set of expander states.

This set contains states that, if observed, have the potential to enable the agent to mark more states

as safe. This determination is carried out using the Lipschitz constant (Section 2.1.3) of the kernel and

underlying safety feature, and is detailed in (3.3). The algorithm will choose the highest predictive

variance expander state as its goal if possible, and the highest predictive variance state if not.

Gt = {s ∈ Scand | gt(s) > 0} where (3.1)

gt(s) =
∣∣∣ {s′ ∈ SUt | ut(s)− L · d(s, s′) > LB}

∣∣∣ for a lower bound safety limit LB (3.2)

gt(s) =
∣∣∣ {s′ ∈ SUt | lt(s) + L · d(s, s′) 6 UB}

∣∣∣ for an upper bound safety limit UB (3.3)

Gt is the optimistic set of expander states, Scand,t is the set of candidate goal states being considered,

and SUt is the set of unexplored states, all at time t. L is the Lipschitz constant, and d(., .) is

the distance metric defined on S (Section 2.1.3).

The optimistic expander set therefore only contains states for which an optimistic measurement

at the state (with “optimistic” meaning at the upper confidence bound function for a lower bound

safety limit, or at the lower confidence bound for an upper bound safety limit) would result in at least

one state being above / below the safety limit respectively to a high degree of confidence, based on

the maximum gradient in the underlying safety feature given by the Lipschitz constant L.

Figure 2.3 contains an illustration of this concept in one dimension - if the red cross near x = 0

represents a measurement taken, this measurement has confirmed that any states between x = −1.9 and

x = 0.9 (shown by the green expansion zone line) would certainly be above a lower bound safety limit of

−5, given the Lipschitz constant (which, somewhat unrealistically, we know exactly for this example).

These experimental results therefore suggest that the exploration performance of SafeEst-MDP

could be improved if it also took into account the concept of expander states. It could potentially

do this by adding gt(s) as another component of the goal scoring function to incentivise the agent to

observe states that are likely to result in the largest expansion of the set of states considered to be safe.

However, the Lipschitz constant can be difficult to determine analytically, and extending this

concept to handle more complex safety specifications than an upper or lower limit may be challenging.

37

3 Implementation and Experiments

3.3 Further Discussion

Exploration time is of course slightly reduced for a map with deterministic transitions (when using

our proposed algorithm) as the agent can plan shortest paths and can determine the exact time

it will take to reach a state. In comparison, with a probabilistic transition model as defined in

Section 3.2.1, the policy generated from the constrained reachability problem will choose paths with

a “safety buffer” from the edge of any potentially unsafe areas, so even if an action accidentally

takes it closer to the unsafe area it will be able to recover.

3.3.1 Implementation Performance Evaluation

The comparisons in this section are rough and not completely informative as they represent only

one size of map with deterministic transitions - larger maps (and probabilistic transition outcomes)

will scale the size of the problem and required computational effort. It is worth noting that problem

complexity does not necessarily scale exponentially with the total map size in terms of number of

known state feature values - in most instances only a small unexplored area around the robot is safe

enough to plan paths to. It will however scale with the complexity of the MDP transition structure

and the number of discretisation intervals (Section 2.3.3).

In the map examples tested, the SafeEst-MDP computation time for choosing goals is roughly

double the computation time for SafeMDP. For the sizes of MDP specified by the maps, SafeEst-MDP

takes an average of ∼ 5 seconds to choose a new goal state (2019 generation 6-core i7 processor, 16GB

RAM). For SafeEst-MDP this is split into the time required to update and predict with the GP model

(∼5%), the time required to build the Est-MDP model and parse data formats (∼45%) and the time

required for PRISM to solve constrained reachability problems (∼50%).

The largest bottleneck in speeding up the time required to choose a goal is the constrained model

solution using PRISM [27] - this is already an optimised piece of software so it is unlikely (without

significant effort) that it can be made to solve the problems considerably faster.

There was a negligible performance difference between GPy [25] and GPflow [26] - for the size of the

maps used, any performance benefit from running the GP regression in parallel was counteracted by

the time taken to load the model into the GPU hardware. It may be that for more complicated maps,

or GP models with higher dimensionality, GPflow will offer an overall performance benefit over GPy.

The largest potential improvement in computational performance would therefore likely come from

optimising the algorithm itself to require fewer PRISM runs to explore, and from optimising the logic that

generates the Est-MDP structure and implements the SafeEst-MDP algorithm. Significant performance

gains could likely be achieved by rewriting this logic in a compiled language rather than Python.

38

3 Implementation and Experiments

3.3.2 Modelling of Radiation Environments with Gaussian Processes

Sections 3.2.2 and 3.2.3 demonstrate the ability of our safe exploration methods to tackle environments

with relatively low radiation levels (the maximum count per second (cps) rate in the radiation dataset

is 38) using a standard GP regression. This is in common with previous literature, where similar

GP models have successfully been used to map radiation fields at low exposure rates [28]. Due to

the statistical nature of radiation exposure, a more complex analysis is required to be able to handle

radiation levels that are high enough to conceivably harm the robot.

As detailed in Section 2.2.2, radiation exposure is governed by the Poisson distribution, specified

by the mean exposure rate parameter λ (2.17). In this case the safety function o modelled by our

GP is the spatial distribution of λ, i.e. λ(x), which we can take noisy measurements of by counting

the number of detected radioactive events y(x) ∼ Pois(λ(x)).

In Definition 7 we suggest a Gaussian distribution as the GP likelihood function p(y|λ) = N (λ, σ2
n).

However, here the correct likelihood function for this situation is a Poisson distribution p(y|λ) = Pois(λ).

At low values of λ, the Gaussian distribution shape differs considerably from a Poisson distribution,

and also assigns some probability to λ < 0, which is clearly non-physical.

At higher rates2, the normal approximation to a Poisson distribution (2.18) is a very good

approximation and the likelihood function therefore converges to a Gaussian. However, the variance

of this Gaussian distribution is also λ: as the mean exposure rate increases, the standard deviation

increases as the square root of the mean exposure rate. It is of course possible to reduce uncertainty

by sampling for n time periods instead of 1, causing the standard deviation to reduce as σ = λ√
n

according to the central limit theorem. This is not a practical solution as it requires pausing the robot

for long periods in areas where it will accumulate more damage from the radiation it is measuring

- and the
√
n term leads to diminishing returns on reducing uncertainty.

To tackle this problem, as in [29], the GP is used to model the logarithm of the exposure rate

log(λ(x)) by combining the GP with a logarithmic link function along with a Poisson likelihood function.

This also limits λ(x) to positive values only, as desired. Without a Gaussian likelihood, the measurement

noise parameter (Section 2.1.3) is removed, reducing the number of hyperparameters to be optimised

by the GP regression. However, the new GP model is non-conjugate and the GP regression predictive

equations (2.7 to 2.9) no longer apply: the regression must be carried out with approximate methods.

These include Laplace approximation (implemented by GPy), sampling-based methods such as

Monte Carlo Markov Chain (MCMC, implemented by GPflow), variational inference approaches

and expectation propagation [4, 30, 31]. With a Poisson likelihood, the GP posterior distribution
2Rough calculations indicate that 10Gy/hr exposure (which is at the lower end of the radiation exposure rate that

AVEXIS (Figure 1.1a) is designed to tolerate) would correspond to 1300 cps with a TF Scientific RadEye survey meter.

39

3 Implementation and Experiments

is reasonably well characterized by its mode so the Laplace approximation is reasonable [30]. The

theoretical limit of MCMC with an infinite number of samples gives the true GP posterior distribution,

but sampling methods clearly require much more computation than an equivalent method based

on approximation using other distributions. In both the Laplace approximation and MCMC cases,

the mean and confidence bound predictions would have to be determined by sampling from the GP

posterior. As expected, all of this significantly increases the computational effort required to carry

out predictions with a Poisson likelihood GP compared to the standard GP model.

1 2 3 4 5 6

x (m)

0

25

50

75

100

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s−

1
)

Mean Prediction

2σ Upper Confidence Bound

Example 1
r2 Distribution

(a) Single axis posterior distribution produced with a Gaussian likelihood GP. The confidence bounds are symmetrical
about the mean prediction line, meaning that the GP is assigning some probability to negative λ.

1 2 3 4 5 6

x (m)

0

25

50

75

100

R
ad

ia
ti

on
le

ve
l

(e
ve

n
ts
s−

1
)

Mean Prediction

2σ Upper Confidence Bound

Example 1
r2 Distribution

(b) Single axis posterior distribution produced with a Poisson likelihood GP, computed using the Laplace approximation
implementation in GPy. The lower certainty bound is much closer to the mean prediction than the upper (and is

restricted to being > 0) but is not shown here for clarity of the figure.

Figure 3.7: Comparisons of the two likelihood functions using the radiation dataset, shown along the x axis
with a fixed y value to take the plot through the predicted peak location of the radiation level distribution.

Although the standard GP regression of the radiation dataset produced a reasonable mean

function for the purposes of multiple source radiation maps in Section 3.2.3, it is clear from the

confidence bound plot in Figure 3.7a that it is not well modelling the underlying behaviour. It has

reasonably high predictive uncertainty across most low radiation exposure states, and is overconfident

in its predictions around the radiation peak - where the predictive uncertainty actually decreases

compared to the low radiation exposure states.

The Poisson likelihood GP fit in Figure 3.7b is clearly significantly better - it correctly assigns

most of the plane to ∼ 0 value background radiation with high confidence, and much more cleanly

40

3 Implementation and Experiments

fits a possible underlying 1/(r2) function inside its error bounds, showing much higher uncertainty

around the peak. The uncertainty increases significantly as the number of radiation events increases,

as expected from the underlying form of the normal approximation to the Poisson distribution. The

Laplace approximation method to produce the plot was verified by also running an MCMC equivalent

with GPflow, which gave a high degree of agreement on the mean function and confidence bounds.

This section (in particular, Figure 3.7b) highlights that the radiation safety constrained exploration

problem is particularly difficult because of the widening uncertainty over λ at higher exposure

rates. This makes it very difficult for the agent to reduce its confidence bounds close to the

safety limit, even with repeated sampling.

A good compromise for highly radioactive environments may be to employ a heteroscedastic GP

model with a standard Gaussian likelihood. This allows for manually increasing the noise variance

assigned to higher value observations. Although the heteroscedastic noise model still excludes a

closed-form solution, it may prove to be an easier model to optimise hyperparameters over than a

Poisson likelihood GP. The model would not work well for areas with low count values where the

normal distribution is not a good approximation to the Poisson distribution, but this is a reasonable

trade-off as these low-intensity areas are clearly the furthest from any safety limit.

3.3.3 Additional Gaussian Process Model Considerations

Another real-world consideration for applying safe exploration techniques to a highly radioactive

environment is the interaction of radiation with physical environmental features. Although we assume

for this report that the distribution of radiation is independent of physical features, a real-world

environment with high levels of radiation will exhibit behaviour such as the physical geometry

attenuating, reflecting or completely blocking radiation.

This is a problem for our modelling as it can effectively introduce discontinuities in radiation level.

For example, corners are particularly “dangerous”: a mobile radiation survey robot may detect very

little radiation as it moves along a thick concrete wall, until it moves just around a corner where it now

has direct line-of-sight to a high activity radiation source which gives it a “lethal” dose of radiation.

Our suggested method for handling this problem is to alter the GP’s prior distribution by using a

non-zero mean function, the case covered in (2.9). Assigning a higher mean radiation level value m(X)

to certain geometrical features in the mobile robot’s map (such as the corners of thick walls) would

make the agent more wary of these features. This should encourage it to approach the “dangerous”

geometry from further away, ideally where it has direct line-of-sight to whatever is around the corner,

but from a safe distance. As it approaches it would then see an upwards gradient in radiation exposure

rather than the step change of moving around the corner.

41

4 System Integration with ROS

4.1 Software Architecture

Safe exploration script

- Main safe exploration
script, packaged as a
ROS node

- Rapport, packaged as
ROS node

- Topological navigation
interface

Rapport_ROS

- Management of
topological maps

- Execution of topological
map policies

Topological navigation

Output visualisation

- GP bounds visualisation
through RVIZ

- Radiation source
location visualisation
for radiation simulator

Key: External origin softwareProject software ORI GOALS Lab software

GPy

Radiation tools

- Simulated radiation
source manager

- Simulated radiation
sensor publishes counts
per integration time

Radiation
count
updates

PRISM
Model
Checker

- Localisation,
move_base, etc

ROS navigation stack

- 2D simulation of the
environment / map

Stage simulator

Gamma
Source
Poses

GP bounds
updates

Position updates to calculate radiation exposure

Figure 4.1: Software architecture diagram for the ROS-integrated system, showing the custom software
written for the project as well as other tools used. Some important flows of information are labelled on the

corresponding arrow showing communication between system components.

This section is designed to demonstrate how a full-stack robotic system would employ the safe

exploration code to carry out a real-world safe exploration task. The implementation from Section 3 was

integrated into a robotic framework called the Robot Operating System (ROS) [32], to interface with

other components frequently used in ORI robotic systems. A basic overview of the components running

under ROS is shown in Figure 4.1. To allow the system to be used as a technology demonstration,

work was also carried out to produce a real-time graphical system for displaying the radiation

environment around the robot and its current GP model.

42

4 System Integration with ROS

Although this system was originally designed to be run on a Clearpath Robotics “Jackal” mobile

robot for a demonstration in the ORI, this was replaced by the Stage simulation package towards

the end of the project. Stage provides the simulation of the mobile robot, its sensors and its physical

environment. This would be replaced by the actual robot and navigation sensor interfaces for a real trial.

4.1.1 Topological Navigation Stack

As opposed to the simulated experiments in Section 3, with a real mobile robot we do not simply

have to navigate across an idealised grid map. The problem of localising the robot within a physical

environment and navigating around it is handled with the standard ROS navigation stack. This

carries out sensor fusion between the input data from the robot LIDAR sensor and the dead

reckoning of the robot’s motor control.

For reliable higher-level navigation functionality, we make use of the topological navigation

framework from the STRANDS project [33]. The STRANDS topological navigation framework

provides the concept of a topological map, where the physical map is covered with a graph made up

of topological nodes, with transitions between nodes represented by the edges of the graph.

For carrying out navigation between nodes, the standard ROS move_base navigation component is

used. The topological navigation system will attempt to guide the robot to the centre of the topological

node specified by its current progress along the path (equivalent to a policy) that it is following.

Rapport_ROS provides functionality for transforming a topological map into an MDP. The high-

level approach to carrying out safe exploration is therefore to programmatically generate a grid-shaped

topological map (either 4-connected or 8-connected) over the space to be explored (using a script in

the safe exploration package), which is then transformed into an MDP by Rapport_ROS. 8-connected

grid maps provide smoother movement for robot navigation, but increase the planning load by a large

factor due to the much larger action space. There is no particular requirement to use a square grid

map, and a set of topological nodes could be laid out in a hexagonal pattern for example.

4.1.2 Safe Exploration Package

This ROS package encapsulates the safe exploration code documented in Chapter 3. Given an MDP

produced from the topological map and a starting set of observations, it manages the progress of the

safe exploration algorithm (Section 2.6) in an asynchronous manner. When policies and goals are

generated by the safe exploration script, these are converted into topological navigation paths between

nodes and passed to the topological navigation stack. The exploration algorithm then blocks on the

navigation progress until the goal state is reached. Measurements are carried out by pausing at a

topological node and inputting a reading from the simulated radiation sensor node.

43

4 System Integration with ROS

4.1.3 Radiation Tools Package

In the form of a ROS package to allow easy integration with the system, this software package is

designed to allow arbitrary placement of radiation sources around a map (either in simulation or for a

physical robot test - a real robot will “detect” the simulated radiation in the same manner).

Also provided is a simulated radiation event counter that measures the robot’s exposure to radiation.

This was designed to use a standard radiation sensor message format, to make it a drop-in replacement

for a physical radiation sensor - either a real one or a physical simulation of radiation. The mean

radiation count rate at an instant in time λ(x) is calculated based on the list of n radiation sources

with locations specified by xsrci and strengths specified by ssrci :

λ(x) =
n∑
i

ssrci
‖x− xsrci ‖2

(4.1)

To allow for calculation of radiation exposure while the robot is moving, the radiation sensor node

integrates λ(x) over time to average it, and then samples a value to report as the total counts

during the integration period according to (2.17). Simple adjustment of the mean rate λ (which is

taken to refer to events per second in this report) is required if the counter integration period

is set at anything other than one second.

The radiation tools are also capable of independently logging the maximum radiation expo-

sure rate and total accumulated radiation dose, to provide an independent benchmark for char-

acterising exploration performance.

Two approaches have been discussed for a physical simulation of radiation exposure, for use in

an exploration demonstration on a real robot. A light-based system would use visible light of a

specific wavelength to simulate radiation, with light sensors on the robot measuring the exposure.

Alternatively, the ORI has access to a physical radiation simulation system developed at the University

of Manchester which uses variable-power high frequency radios as “radiation sources” and a radio

signal strength sensor as the “radiation exposure” sensor. Either of these physical radiation simulators

could be set up to be computer controllable, which would allow for the possibility of simulating a

hazard distribution that is not stationary in time. This would enable testing of a spatio-temporal

GP extension of the current exploration GP modelling approach, as in [9].

4.1.4 Output Visualisation Package

To add to the system’s utility as a technology demonstration, a tool was created to output the agent’s

GP model in real-time as a visualisation in RVIZ, the ROS 3D visualisation tool. This was the work

of Michal Staniaszek at the ORI, and makes use of RVIZ point clouds to show the current GP mean

prediction and upper confidence bound across the physical environment map.

44

4 System Integration with ROS

As shown in Figure 4.3, the colour of the confidence bound point cloud points is assigned based

on whether the agent believes the corresponding area is safe according to the safety specification -

in a similar way as the plots in this report (Figures 3.2b and 3.5b).

4.2 System Validation Outputs

Figure 4.2: An 8-connected topological map
laid out over a physical collision map, with

the map nodes shown by blue circles.

Figure 4.3: An Example GP model mean
and upper bound point cloud

visualisation in RVIZ.

Figure 4.4: RVIZ output showing a simulated mobile robot in a corridor, where the black lines are walls that
it has recorded in its map. The pink ellipse represents the robot’s belief about its location, based on the LIDAR
input (shown as red lines on the insides of the walls). Also shown are markers for two radiation sources of

differing strengths, added by the radiation tools package. The radiation detector simulation is also simulating
radiation event counts on the robot.

These figures show correct operation of several of the components described in Section 4.1.

45

5 Conclusions

5.1 Summary of Contributions

In the course of this project, we have investigated the theory behind safe exploration in MDPs,

developed new formalisms and algorithms, and evaluated their effectiveness in representative safety

constrained tasks based on simulation using real-world data.

The new formalisms developed during this project show significant promise based on the experimental

results collected, and allow for more expressive safety specifications than previous approaches. The

SafeEst-MDP algorithm, which is based on the new formalism, generally outperforms previous safe

exploration algorithms in several measures as shown by a set of experiments run on simulated maps.

The increased complexity of our algorithms means that planning processing time is significantly

increased compared to simpler exploration algorithms such as SafeMDP [3]. However, the experiments

demonstrate that planning is still acceptably fast for reasonable problem sizes, and for many applications

the heavy computation work can be performed remotely from the mobile robot.

This report also includes a more in-depth analysis and implementation of kernel choice and

hyperparameter optimisation than existing safe exploration literature, which tend to leave this area

relatively unexplored. For the radioactive environment application case, an in-depth analysis was

carried out using a Poisson likelihood function in Section 3.3.2, which demonstrated the need for

careful choice of the GP model type used to model highly radioactive environments, where uncertainty

in radiation level is a significant concern. The difficulty of the radiation environment exploration

task that we set for the agent demonstrates that it would also work well on comparatively simpler

tasks where a Gaussian likelihood is more appropriate.

Other than the theory developed, several software tools were created to enable work on safe

exploration and GP modelling. These tools are designed with future use and extension in mind, as they

integrate with existing ORI code. As well as the core data structure and algorithm implementations,

work was also carried out to integrate the safe exploration codebase into a full robotic system in Section 4,

requiring it to cooperate with separate mapping, localisation and local navigation components also

running on the robot. This also included the construction of additional tools for simulating a radiation

46

5 Conclusions

environment in a real-world map, and expressively visualising the robot’s model of its environment.

This all enables the feasibility of a full safe exploration robotic system to be demonstrated in simulation,

with a view to run the demonstration on a real-world mobile robot in the future.

5.2 Potential Future Work

There is significant potential for future work to be carried out, both in terms of improving the

underlying exploration approach and extending it to tackle new exploration tasks.

Included in our formulation of the Est-MDP is the potential for unknown state features to affect the

transition model - both in terms of action costs and transition probabilities. It is worth investigating

how the safe exploration algorithm behaves for a case where the transition model structure does depend

on unknown states, potentially in an underwater vehicle setting where currents may affect the robot’s

ability to navigate. This concept was not explored in-depth for this report, particularly as the radiation

level is assumed not to affect the robot’s ability to navigate in the experimental sections.

Integrating GP predictions into the cost structure would be one approach to problems where there

is a cumulative exposure limit as well as an upper bound limit on the hazard - this is particularly

applicable to a radioactive environment. This could lead to a more complex and interesting exploration

task, such as requiring a mobile robot to explore as much of a radioactive environment as possible

without surpassing a cumulative radiation exposure limit. The ability to specify these tasks fully in

co-safe LTL would be elegant and highly useful, and would require more work.

Extending our exploration approach to carry out safe exploration with Bayesian optimisation

or goal-driven exploration tasks (such as those discussed in Section 1.2) would be other clear

examples of future work. Previous literature provides a starting point as to how this has been

done with the SafeMDP [3] algorithm.

Additional investigation of the POMDP-based methods described in Section 1.2 would enable better

comparisons between their underlying models and ours, and could show how a POMDP representation

might be transformed into an Est-MDP representation and vice versa. Along the same vein, the

information theoretic Bayesian optimisation theory in this field of literature could be used to develop

better exploration algorithms. The current goal scoring function in Section 2.6.3 depends largely on the

GP predictive uncertainty to identify which states are useful to measure - this is generally considered a

myopic approach to maximising information from exploration. The goal scoring function could also be

improved by the addition of the concept of expander states from SafeMDP, as described in Section 3.2.4.

In terms of the specific application of safe exploration to radioactive environments, more investigation

could be carried out into how best to include prior information on risky physical geometry (such as

47

5 Conclusions

the corners of thick walls) using the GP prior mean function, as discussed in Section 3.3.3. Further

development and testing of this concept would require much more complex models of radiation behaviour

than this project had access to, and possibly real-world experimentation.

The initial investigation into modelling radiation with a Poisson likelihood GP in Section 3.3.2

suggests that a Laplace approximation method works well for our gamma radiation dataset, but more

work could be carried out to compare the efficiency and accuracy of different approaches such as

expectation propagation. As the Poisson likelihood GP requires significantly more computational

effort than the GP models used elsewhere in this report, it may also be worth looking into sparse

approximations [4] for this GP model.

Another point for future investigation would be to make better use of continuous counting

measurements e.g. from a radiation event sensor. This sensor would be continually detecting events

as the robot is navigating in the radioactive environment example, but at present we only make

use of readings that we take when we have arrived at states of interest. Continuous monitoring

of radiation level could also feed into the policy safety check that runs as the robot is navigating.

For example, if the robot detects significantly higher radiation than it expected when it planned

its path, it may be a good idea to stop and reconsider.

In terms of implementation and integration, it would be interesting to apply the safe exploration

system to a situation where the robot has incomplete knowledge of the physical environment as well,

which it may handle using e.g. simultaneous localization and mapping (SLAM) techniques. The

exploration algorithm could be tweaked to encourage the agent to visit states that may increase

knowledge of the physical environment as well as knowledge of the unknown hazard distribution.

Finally, a full implementation of the multi-step GP prediction propagation (discussed in Section 2.7)

would be useful to characterise the trade-off between more accurate estimation of the safety of

paths and additional computational load.

48

Bibliography

[1] E. Ackerman, “Unlucky robot gets stranded inside Fukushima nuclear reactor, sends back
critical data,” accessed 2020-04-2. Available: https://spectrum.ieee.org/automaton/robotics/
industrial-robots/robot-stranded-inside-fukushima-nuclear-reactor

[2] L. Chang, “The robots Japan enlisted to clean up Fukushima have been destroyed
from radiation exposure,” 2016, Business Insider, accessed 2020-04-25. Available: https:
//www.businessinsider.com/fukushima-robots-destroyed-by-radiation-2016-3

[3] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite Markov decision
processes with Gaussian processes,” in Proceedings of the 30th International Conference on Neural
Information Processing Systems, 2016, p. 4312–4320.

[4] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.

[5] J. García, Fern, and o Fernández, “A comprehensive survey on safe reinforcement learning,”
Journal of Machine Learning Research, vol. 16, no. 42, pp. 1437–1480, 2015. Available:
http://jmlr.org/papers/v16/garcia15a.html

[6] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe exploration for optimization with Gaussian
processes,” in Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37. JMLR.org, 2015, p. 997–1005.

[7] T. M. Moldovan and P. Abbeel, “Safe exploration in Markov decision processes,” in Proceedings
of the 29th International Conference on Machine Learning, 2012, pp. 1451–1458.

[8] A. Wachi, Y. Sui, Y. Yue, and M. Ono, “Safe exploration and optimization of constrained MDPs
using Gaussian processes,” in AAAI Conference on Artificial Intelligence, 2018.

[9] A. Wachi, H. Kajino, and A. Munawar, “Safe exploration in Markov decision processes with
time-variant safety using spatio-temporal Gaussian process,” arXiv preprint arXiv:1809.04232,
vol. abs/1809.04232, 2018. Available: http://arxiv.org/abs/1809.04232

[10] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration for interactive machine learning,”
in Advances in Neural Information Processing Systems, 2019, pp. 2887–2897.

[11] R. Marchant, F. Ramos, and S. Sanner, “Sequential bayesian optimisation for spatial-temporal
monitoring,” in Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
ser. UAI’14. Arlington, Virginia, USA: AUAI Press, 2014, p. 553–562.

[12] G. Flaspohler, V. Preston, A. P. M. Michel, Y. Girdhar, and N. Roy, “Information-guided robotic
maximum seek-and-sample in partially observable continuous environments,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3782–3789, 2019.

[13] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model predictive
control for safe exploration,” in 2018 IEEE Conference on Decision and Control (CDC), 2018, pp.
6059–6066.

[14] K. Polymenakos, L. Laurenti, A. Patane, J.-P. Calliess, L. Cardelli, M. Kwiatkowska, A. Abate,
and S. Roberts, “Safety guarantees for planning based on iterative Gaussian processes,” 2019.

[15] Mausam and A. Kolobov, Planning with Markov Decision Processes: An AI Perspective. Morgan
& Claypool Publishers, 2012.

[16] A. Pnueli, “The temporal semantics of concurrent programs,” Theoretical Computer Science,
vol. 13, pp. 45–60, 1981.

49

https://spectrum.ieee.org/automaton/robotics/industrial-robots/robot-stranded-inside-fukushima-nuclear-reactor
https://spectrum.ieee.org/automaton/robotics/industrial-robots/robot-stranded-inside-fukushima-nuclear-reactor
https://www.businessinsider.com/fukushima-robots-destroyed-by-radiation-2016-3
https://www.businessinsider.com/fukushima-robots-destroyed-by-radiation-2016-3
http://jmlr.org/papers/v16/garcia15a.html
http://arxiv.org/abs/1809.04232

Bibliography

[17] F. Teichteil-Königsbuch, “Stochastic safest and shortest path problems,” in Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012, p. 1825–1831.

[18] B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning with formal performance
guarantees for mobile service robots,” The International Journal of Robotics Research, vol. 38,
no. 9, 2019.

[19] “Restriction of exposure - hazard control - 6.1.1 inverse square law,” University of St Andrews,
accessed 2020-05-10. Available: https://www.st-andrews.ac.uk/staff/policy/healthandsafety/
radiation/6restrictionofexposure-hazardcontrol/

[20] J. Duchi, “Derivations for linear algebra and optimization,” Berkeley, California, vol. 3, pp.
2325–5870, 2007.

[21] J. M. Kirkpatrick and B. M. Young, “Poisson statistical methods for the analysis of low-count
gamma spectra,” IEEE Transactions on Nuclear Science, vol. 56, no. 3, pp. 1278–1282, 2009.

[22] S. Chakraborty, “Generating discrete analogues of continuous probability distributions-a survey of
methods and constructions,” Journal of Statistical Distributions and Application, vol. 2, 08 2015.

[23] Z. Drezner and D. Zerom, “A simple and effective discretization of a continuous random variable,”
Communications in Statistics - Simulation and Computation, vol. 45, no. 10, pp. 3798–3810, 2016.
Available: https://doi.org/10.1080/03610918.2015.1071389

[24] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation for partially satisfiable co-
safe LTL specifications,” in Proc. 24th International Joint Conference on Artificial Intelligence
(IJCAI’15). IJCAI/AAAI, 2015, pp. 1587–1593.

[25] GPy, “GPy: A Gaussian process framework in Python,” http://github.com/SheffieldML/GPy,
since 2012.

[26] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman, “GPflow: A Gaussian process library using TensorFlow,” JMLR,
vol. 18, no. 40, 2017.

[27] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic real-time
systems,” in Proc. 23rd International Conference on Computer Aided Verification (CAV’11), ser.
LNCS, vol. 6806. Springer, 2011, pp. 585–591.

[28] B. A. Khuwaileh and W. A. Metwally, “Gaussian process approach for dose mapping
in radiation fields,” Nuclear Engineering and Technology, 2020. Available: https:
//www.sciencedirect.com/science/article/pii/S1738573319305935

[29] P. J. Diggle, J. A. Tawn, and R. A. Moyeed, “Model-based geostatistics,” Journal of the Royal
Statistical Society: Series C (Applied Statistics), vol. 47, no. 3, pp. 299–350, 1998. Available:
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00113

[30] C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1342–1351, 1998.

[31] L. Shang and A. B. Chan, “On approximate inference for generalized Gaussian process models,”
2013.

[32] Stanford Artificial Intelligence Laboratory et al., “Robotic Operating System.” Available:
https://www.ros.org

[33] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young, J. Wyatt,
D. Hebesberger, T. Kortner, R. Ambrus, N. Bore, J. Folkesson, P. Jensfelt, L. Beyer, A. Hermans,
B. Leibe, A. Aldoma, T. Faulhammer, M. Zillich, M. Vincze, E. Chinellato, M. Al-Omari,
P. Duckworth, Y. Gatsoulis, D. C. Hogg, A. G. Cohn, C. Dondrup, J. Pulido Fentanes, T. Krajnik,
J. M. Santos, T. Duckett, and M. Hanheide, “The strands project: Long-term autonomy in
everyday environments,” IEEE Robotics Automation Magazine, vol. 24, no. 3, pp. 146–156, 2017.

50

https://www.st-andrews.ac.uk/staff/policy/healthandsafety/radiation/6restrictionofexposure-hazardcontrol/
https://www.st-andrews.ac.uk/staff/policy/healthandsafety/radiation/6restrictionofexposure-hazardcontrol/
https://doi.org/10.1080/03610918.2015.1071389
http://github.com/SheffieldML/GPy
https://www.sciencedirect.com/science/article/pii/S1738573319305935
https://www.sciencedirect.com/science/article/pii/S1738573319305935
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00113
https://www.ros.org

Appendices

a

	Introduction
	Background and Project Aims
	Literature Review
	Structure of this Report

	Theoretical Approach
	Preliminaries
	Markov Decision Processes
	Constrained Reachability Optimisation and Linear Temporal Logic
	Gaussian Process Regression

	Additional Background Theory
	Kullback–Leibler Divergence Between Two Multivariate Normal Distributions
	Poisson Statistics of Radiation Exposure

	Exploration Model
	Reachability and Returnability in an MDP
	Formal Problem Definition
	Mapping from Continuous GP Domain to Discrete MDP States

	Top-Level Exploration Algorithm for Probabilistic Transition Models
	U-MDP Exploration Algorithm
	Policy Safety Check
	Probabilistic Determination of Reachability and Returnability

	Confidence Bounds Approach to Path Planning
	Confidence Bound Goal and Policy Generation Algorithm

	Estimated MDP Approach to Path Planning
	Estimated MDP Structure
	Estimated MDP Goal and Policy Generation Algorithm
	Goal Scoring Function

	Extension of Estimated MDP Approach to Multi-Step GP Propagation

	Implementation and Experiments
	Software Architecture
	Evaluation in Simulation
	Programmatically Generated Water Depth Model
	Single Radiation Source Dataset
	Multiple Radiation Source Map
	Expander State Determination

	Further Discussion
	Implementation Performance Evaluation
	Modelling of Radiation Environments with Gaussian Processes
	Additional Gaussian Process Model Considerations

	System Integration with ROS
	Software Architecture
	Topological Navigation Stack
	Safe Exploration Package
	Radiation Tools Package
	Output Visualisation Package

	System Validation Outputs

	Conclusions
	Summary of Contributions
	Potential Future Work

	Bibliography
	oxblueRisk Assessment

