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Abstract
The exploration of new environments is a crucial challenge for mobile robots. This task becomes even more complex with
the added requirement of ensuring safety. Here, safety refers to the robot staying in regions where the values of certain
environmental conditions (such as terrain steepness or radiation levels) are within a predefined threshold. We consider two
types of safe exploration problems. First, the robot has a map of its workspace, but the values of the environmental features
relevant to safety are unknown beforehand and must be explored. Second, both the map and the environmental features
are unknown, and the robot must build a map whilst remaining safe. Our proposed framework uses a Gaussian process to
predict the value of the environmental features in unvisited regions.We then build aMarkov decision process that integrates the
Gaussian process predictionswith the transition probabilities of the environmentalmodel. TheMarkov decision process is then
incorporated into an exploration algorithm that decides which new region of the environment to explore based on information
value, predicted safety, and distance from the current position of the robot. We empirically evaluate the effectiveness of our
framework through simulations and its application on a physical robot in an underground environment.
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1 Introduction

Mobile robot tasks often involve navigating through envi-
ronments with hazardous conditions. These hazards can take
the form of steep terrain for planetary rovers, underwater
currents or shallow water depth for underwater vehicles, or
radiation levels in disaster recovery or nuclear inspection. In
this paper, we propose a safe exploration method that han-
dles cases where the values of the hazardous environmental
features are unknown a priori. We consider two settings: one
where the robot already has a map of the area to be explored
and wants to learn about the hazards in a safe manner, and
another where the robot lacks a map and needs to create one
while considering the hazards and maintaining safety.

The core of our framework is based on modelling
the robot’s navigation under the hazardous features with
unknown values as a partially known state Markov decision
process (PKSMDP), and utilising a Gaussian process (GP)
to estimate the unknown values across the environment. The
GP’s capability to quantify its prediction uncertainty is cru-
cial, since ensuring safety with a high degree of certainty
requires the robot to assess its confidence in the predictions
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about the environmental features. To plan considering this
uncertainty, we propose encoding the GP uncertainties into
the transition probabilities of the PKSMDP, yielding amodel
we call the Estimated MDP (EstMDP).

We propose two novel exploration algorithms that use the
EstMDP to plan safe paths to states expected to be infor-
mative. These safe paths take into account the probability
of falling into an unsafe state when navigating to an infor-
mative state, or when travelling back from an informative
state to a state with guaranteed safety. The first algorithm,
SafeEstMDP-Process, extends the work in Turchetta et al.
(2016) to handle probabilistic transition models and support
more complex safety specifications. SafeEstMDP-Process
selects new goal locations that reduce the uncertainty of the
GP estimates of the unknown hazard. The second algorithm,
SafeEstMDP-Map, integrates this framework with an online
mapping system, thereby extending it to settings where the
map of the workspace the robot is operating in is also
unknown. SafeEstMDP-Map incrementally builds a naviga-
tion PKSMDP online using data from onboard sensors, and
selects new goal locations based on expected information
gain of the underlying occupancy map representation of the
workspace.

We extensively evaluate our algorithms in simulations of
real-world environments, empirically showing that it sig-
nificantly outperforms the work of Turchetta et al. (2016)
and hand-crafted baselines, safely achieving increased envi-
ronmental exploration while also minimising the distance
travelled in the process. We also report on a trial performed
using a Boston Dynamics Spot deployed in an underground
mine section at Corsham, Wiltshire, UK.

The contributions of this paper are as follows:

• The PKSMDP, a novelmodelwhich formalises problems
of safe exploration with unknown hazardous features
under uncertain action outcomes;

• The encoding of GP predictions into the PKSMDP tran-
sition function, yielding the EstMDP planning model;

• Two exploration algorithms, under different assumptions
of prior knowledge of the environment map, which make
use of the EstMDP to decide where to explore next;

• An empirical evaluation emphasising the benefits of our
approach based on GP predictions and planning under
uncertainty.

2 Related work

Planning and exploration with MDPs and GPs. MDPs
are a widely used formalism for planning under uncertainty
for robots, e.g. Feyzabadi and Carpin (2017), Lacerda et
al. (2019), Gopalan et al. (2017). GP-modelled unknown

process exploration has commonly been investigated in the
Bayesian optimisation setting. Sui et al. (2015) introduced
the idea of using GP regression to maximise an objective
function value while ensuring high probability of not sam-
pling function values that break a safety bound. This is done
by considering the upper confidence bounds given by the
GP when exploring. This work has been extended to con-
sider safety functions which are separate from the objective
function (Sui et al., 2018) and to reason explicitly about the
information gain about the safety of the parameters (Bottero
et al., 2022), in order to improve sample efficiency.

Safe exploration of an MDP introduces the need to reason
about state reachability, which is not required in the Bayesian
optimisation setting where observations are assumed to be
taken freely across the domain. An early work on safe
exploration of MDPs was Moldovan and Abbeel (2012),
which investigated the problem of exploring an MDP whilst
ensuring returnability to the initial state but assumes full
knowledge of the safety of states. Turchetta et al. (2016)
introduced the SafeMDP algorithm for safe exploration of
MDPs using GPs. SafeMDP reasons about both reachabil-
ity from and returnability to the already visited set of states,
which must be safe if the safety bound has not been broken.
However, SafeMDP only considers new states to visit that
are a single step from an already explored state. We extend
the reachability and returnability concepts to reason about
multiple-step safety probabilities along paths. Alongwith the
inclusion of transition costs in the exploration objective, this
makes our algorithm far more cost-efficient and less myopic
when exploring. Finally, we alleviate SafeMDP’s determin-
istic transition function assumption and explore MDPs with
probabilistic transitions than allow for modelling the impact
of the unknown process on the robot’s dynamics. For exam-
ple, if the unknown process represents underwater currents
acting on an autonomous underwater vehicle (AUV), high
magnitude currents could push the robot intowaypoints other
than the intended goal waypoint (Budd et al., 2022). Some
actions may even be entirely infeasible because the water
current velocity from the goal waypoint towards the AUV
is higher than the maximum water-frame speed of the AUV.
Wind can have similar effects on an unmanned aerial vehi-
cle (Badings et al., 2022). If the unknown process is terrain
steepness, higher terrain gradients could make it more likely
that a wheeled robot slips into an unintended waypoint while
trying to navigate to the goal waypoint (Rutherford et al.,
2021). Other extensions of SafeMDP include multi-agent
safe exploration (Zhu et al., 2020).

The standard MDP formulation assumes a fully known
model of the environment, and full observability of the
current state. For sequential decision-making under state
uncertainty, the partially observable MDP (POMDP) formu-
lation is commonly used (Kaelbling et al., 1998; Spaan et al.,
2015; Lauri et al., 2019). Outside of the safety-constrained
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setting,GPs have beenused asPOMDPbeliefmodels to carry
out unknown process exploration in GP-modelled environ-
ments (Marchant et al., 2014; Morere et al., 2017; Flaspohler
et al., 2019).

As with existing MDP safe exploration algorithms above,
we do not use a partially observable formulation of the
problem to avoid the computational complexity of POMDP
planning. Although our approach will act more myopically
than a POMDP formulation, it requires far less computation.
Furthermore, given that models for exploration tend to be
inaccurate, it is common to use a next-best-view approach as
we propose here, rather than spend computational resources
performing lookaheads based on an inaccurate model. Our
approach also has similarities to a mixed observability
MDP (Ong et al., 2010), where the robot’s location is observ-
able but the environment process is only partially observable.

Exploration of unknown environments. The general
problem of exploration of unknown environments has been
addressed through frontier-based approaches, which aim to
guide the robot towards unknownareas of themap (Yamauchi,
1998; Yamauchi et al., 1998; Freda & Oriolo, 2005). The
research on this topic has recently received a lot of attention
due to the DARPA Subterranean Challenge (SubT), where
teams of robots must autonomously explore underground
environments. In the context of SubT, extensive teams of
researchers have developed and tested complex integrated
systems which address problems such as localisation and
mapping in GPS-denied environments, navigation in adverse
terrains, or coordination of heterogeneous multi-robot teams
under communication constraints (Tranzatto et al., 2022;
Rouček et al., 2022; Hudson et al., 2022;Morrell et al., 2022;
Scherer et al., 2022). Numerous exploration algorithms have
been developed in the context of SubT, a significant portion of
which rely on frontier-based methods (Bayer & Faigl, 2019;
Dang et al., 2020; Williams et al., 2020). Our SafeEstMDP-
Map approach also uses a notion of frontiers to drive the
robot towards unknown areas of the map. However, because
it must maintain safety with regards to the unknown pro-
cess, we also consider possible points which are not at the
edge of known space but for which the GP prediction of the
unknownprocess still has high variance.Given the large scale
of the SubT domains, exploration approaches are often hier-
archical, with the aim of ensuring thorough exploration at a
local level whilst considering when to move to other unex-
plored areas of the map at a global level (Dang et al., 2020;
Cao et al., 2021; Kim et al., 2021). Furthermore, approaches
used in SubT have a strong focus on the traversability of
edges in the navigation graph. In contrast, we either assume
the traversability is given, in the form of a navigation MDP,
or that traversability can be checked by simple ray casting,
assuming that the robot can traverse an edge unless there is
an obstacle on the way. Moreover, we do not separate the

exploration algorithm between local and global levels. This
is done because our focus is on the use of GPs to model
an external unknown process and reason about safety with
regards to it. Note that this aspect goes beyond what is con-
sidered in the SubT works. We also note that our approach
can in principle be integratedwith thesemore complex explo-
ration approaches, ensuring an extra layer of safety against
external processes.

3 Preliminaries

3.1 Markov decision processes & constrained
reachability

Definition 1 An MDP is defined as a tuple M = 〈S, s, A,

T , c〉, where S is a finite set of states; s ∈ S is the initial
state; A is a finite set of actions; T : S × A × S → [0, 1] is
a probabilistic transition function; and c : S × A → R≥0 is
a cost function.

Examples of cost functions are the expected time to exe-
cute an action, or the expected energy required to do so. A

path through an MDP is a sequence w = s0
a0→ s1

a1→ ...

where T (si , ai , si+1) > 0 for all i ∈ N. We denote the set of
all paths of M starting from state s as PathM,s . The choice
of action to take at each step of the execution of an MDP
is made by a policy. In this paper, we consider determin-
istic, stationary policies, defined as functions π : S → A
that map each state s ∈ S to the action to execute in s, and
denote the set of all such policies as �. Given an MDP M
and a policy π ∈ �, we can define a probability measure
PrπM,s over the set of paths PathM,s (Kemeny et al., 1976).
Furthermore, for a measurable function X : PathM,s → R,
we write Eπ

M,s(X) to denote the expected value of X with
respect to PrπM,s .

We consider cost-optimal reach-avoid problems forwhich
the probability of satisfaction might be less than one. These
involve identifying a policy to reach a set of goal states whilst
avoiding a set of forbidden states.

Definition 2 Let G ⊂ S be a set of goal states and F ⊂ S be
a set of forbidden states. We define the set of paths that reach
G whilst avoiding F as:

reach¬F,G ={(s0 a0→ s1
a1→ . . .) ∈ PathM,s0 |

exists i ∈ N such that

si ∈ G and s j /∈ F for all j ≤ i}. (1)

Wewill consider policies that are cost-optimal, in the sense
that they minimise the expected cumulative cost to reach
either a goal state, or a state where reaching the goal is not
possible.
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Definition 3 Letw = s0
a0→ s1

a1→ ... ∈ PathM,s0 .We define
lw as the timestep until which cost will be accumulated for
path w:

lw =
⎧
⎨

⎩

minl s. t. sl ∈ G if w ∈ reach¬F,G

minl s. t.
Prmax

M,sl
(reach¬F,G) = 0 otherwise,

(2)

where Prmax
M,sl

(reach¬F,G) denotes the maximum over � of
PrπM,sl

(reach¬F,G).

Note that the second condition in the definition of lw
encompasses the case where a forbidden state is visited
before a goal state, and the case where the path can never
reach a goal state. We can now define the cost-optimal reach-
avoid problem.

Problem 1 Let cumul¬F,G : PathM,s → R≥0 be a function

that maps a path w = s0
a0→ s1

a1→ . . . to the cost accumu-
lated up to lw:

cumul¬F,G(w) =
lw−1∑

i=0

c(si , ai ), (3)

and �∗ = {π ∈ � | π = argmaxπ ′ Prπ
′

M,s(reach¬F,G)} be
the set of policies that maximise the probability of reaching
G whilst avoiding F . The cost-optimal reach-avoid problem
is defined as finding the policy π¬F,G ∈ �∗ that has minimal
expected cumulative cost:

π¬F,G = argmin
π∈�∗

Eπ
M,s(cumul¬F,G). (4)

The above optimisation problem is a variant of a safest
and stochastic shortest path problem (Teichteil-Königsbuch
2012). The minimal expected cost for these problems
is known to converge to a finite value. We will write
E∗
M,s(cumul¬F,G) to denote the (minimal) expected value

corresponding to π¬F,G . In order to find π¬F,G , we encode
the constrained reachability problem in co-safe linear tem-
poral logic and use the approach presented in Lacerda et al.
(2019).

3.2 Gaussian processes

A GP (Rasmussen & Williams, 2006) is defined as a col-
lection of random variables, any finite number of which
have a joint Gaussian distribution. A GP is fully specified
by its mean function m(s) and kernel function k(s, s′),
i.e. f (s) ∼ GP(m(s), k(s, s′)). We let m(s) = 0 without
loss of generality. The kernel function k is parameterised
by hyperparameters θ that encode prior assumptions over
the unknown function f . We make the standard modelling

assumptions that f has bounded norm in the Reproducing
Kernel Hilbert Space associated with the chosen kernel func-
tion, and also that it is Lipschitz continuous with respect to
some metric d(·, ·) on S (Turchetta et al., 2016; Wachi et al.,
2018).

Definition 4 Let D = {si , zi }nDi=1 be a dataset of nD noisy
observations of the form zi = f (si ) + εi , where each εi ∼
N (0, σ 2). For a test point s∗, the GP posterior is defined as:

PGP ( f (s∗) | D) ∼ N (kT∗(K + σ 2I)−1z,

k(s∗, s∗) − kT∗(K + σ 2I)−1k∗), (5)

where z = [z1, . . . , znd ]T; I ∈ R
nD×nD is the identitymatrix;

K ∈ R
nD×nD is the positive semi-definite kernel matrix such

that Ki, j = k(si , s j ); and k∗ = [k(s1, s∗), . . . k(snd , s∗)]T.
It is possible to account for noise in the dataset GP inputs

si as well as observations zi of f (si ) by transforming the GP
to maintain the noise-free input assumption. This is done
by adding a correction term to the GP observation noise
(McHutchon & Rasmussen, 2011).

3.3 Occupancymapmodels of unknown
environments

Consider a bounded environment X ⊂ R
n , partitioned into

free and occupied space. This is represented by sets Xfree

and Xocc, respectively. We will maintain these sets using
occupancymaps (Elfes, 1989) as they provide a versatile rep-
resentation of unstructured environments observed through
noisy sensor measurements. To simplify the presentation, we
will consider n = 2 for the remainder of the paper, i.e.,
we assume the robot is deployed in an environment which
can be navigated in a horizontal 2D plane. However, the
methods proposed here can generalise to consider a 3D envi-
ronment. Thus, we represent the environment as a grid map
M = {m1, . . .m�} of � cells m ⊂ R

2.
We keep a classification of cells m ∈ M as either free

space, occupied space, or unknown space. There are several
ways tomaintain such a classification. In our implementation,
we use the OctoMap framework (Hornung et al., 2013), an
octree-based library that provides a probabilistic occupancy
estimate of each 3D voxel in the environment, projecting it
to 2D by taking a slice of the OctoMap at the height of the
robot’s lidar.

We are interested in maximising exploration coverage
over an unknown environment. To do so efficiently, we use
the notion of volumetric gain from Dang et al. (2020), which
estimates the unmapped volume that could be perceived by
an onboard sensor from a given location x ∈ X .

Definition 5 Let Nx be the set of cells observed from location
x ∈ X . We define volumetric gain at x as a weighted sum
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over the cells in each class observable from x , by casting
uniformly-spaced rays outwards in all directions:

gain(x) = αunkN
x
unk + αfreeN

x
free + αoccN

x
occ, (6)

where Nx
c is the number of cells observable from x of class

c, and αunk > αfree > αocc ≥ 0.

Theαc coefficients are normalised such that a gain value of
1 represents every ray cast seeing purely unknown space, and
a value of 0 representing the robot being completely enclosed
by occupied space. The specific values of the α parame-
ters that produce the best performance will depend on the
structure and connectivity of the environment: for example,
whether it is made up of constrained corridors or wide-open
spaces.

Note that our OctoMap-based environment representation
already is a 3D representation that we project to 2D. The
exploration algorithms we propose also generalise naturally
to 3D, thus extendingour framework to 3D is straightforward.

4 Modelling and Problem formulation

4.1 Underlyingmodel

We consider a set of environmental processes which are
unknown to the robot a priori. These processes represent
environmental phenomena that vary across the environment
X , such as radiation levels or underwater currents, for which
the robot can draw noisy sensor measurements at its current
location.

Definition 6 (Unknown Processes) The unknown processes
at environment X are defined as f : X → O where O = R

m

is the observation space of f , with m being the number of
modelled unknown processes. The robot can observe noisy
sensor measurement ω : X → R

m of the form:

ω(x) = f (x) + ε, (7)

where ε = [ε1, . . . , εm] is an m-dimensional vector of
Gaussian observation noise, i.e. ε j ∼ N (0, σ 2

j ) for all
j ∈ {1, . . . ,m}.
For the remainder of the paper, we will consider m = 1,

i.e., we assume there is a single unknown process. However,
the methods proposed can easily generalise to more than one
unknown process, either using amulti-output GP (Osborne et
al., 2008) ormultiple single-output GPs. The former assumes
non-independent process dynamics, where learning about
one process could improve predictions of another.

For the purpose of planning and navigation, we represent
the environment as a set of d waypoints V = {x1, . . . , xd} ⊂

X , and consider a stochastic model of navigation between
waypoints under the influence of the unknown process.

Definition 7 A partially known state MDP (PKSMDP) for
navigation is a tupleMO = 〈SO , sO , AO , T O ,CO〉 where:

• SO = V×O , i.e., the state space is composed of a loca-
tion in the environment v and the corresponding value
f (v) of the unknown process;

• sO = (v, f (v)), where v is the robot’s initial position;
• AO = V × V is a set of navigation actions such that

(v, v′) ∈ AO if the robot cannavigate fromv tov′ without
visiting any other waypoint on the way;

• T O : (V×O) × AO × V → [0, 1], where T O((v, o),
(v, v′), v′′) is the probability of the robot reaching way-
point v′′ given that it attempted to reach waypoint v′ from
v, and the value of the unknown process at v is o;

• CO : (V×O) × AO → R≥0 is the cost function, where
CO((v, o), (v, v′)) is the cost of attempting to navigate
from waypoint v to waypoint v′ when the value of the
unknown process at v is o.

Note that a PKSMDP is not a standardMDP as formalised
inDefinition 1. In particular, the transition function is defined
such that the action outcomes are a distribution over only
the set of waypoints. This is because the underlying state is
uniquely defined by the value of the waypoint v, i.e., sO =
(v, f (v)). Furthermore, since f is unknown and the robot is
only able to make noisy observations, the PKSMDP cannot
be directly used for planning. Finally, note that SO is not a
discrete set because its componentO is continuous. InSect. 5,
we will propose a model that estimates the PKSMDP.

Previous approaches generally model the unknown pro-
cess as a cost function rather than as part of the state. By
including unknown process values as part of the state, the
PKSMDP can model the impact of these process values on
the robot dynamics.

We also consider a safety function defined over the values
of the known and unknown state features.

Definition 8 Asafety function is amappingφ : SO → {0, 1}
where φ(so) = 1 when s is considered safe and 0 otherwise.
The sets of safe and unsafe states can then be defined as
safeφ = {so ∈ SO | φ(so) = 1} and unsafeφ = SO\safeφ .

A simple safety function which depends only on a single
unknown value state feature could be an upper-bound b ∈ R

on the value of that feature, as used in Sect. 8.1.1. However,
our approach allows for safety to be defined as an arbitrary
Boolean functionover the state-spaceof thePKSMDP, some-
thing which is not possible with existing approaches. We
demonstrate such a safety function in Sect. 8.1.2.
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4.2 Problem formulation

We now pose the two problems addressed in this paper. First,
we assume that the area has been previously spatiallymapped
and there is a knownPKSMDPdefined over themapped area.
The goal is to accurately estimate f whilst remaining safe.

Problem 2 Let MO = 〈SO , sO , AO , T O ,CO 〉 be a
PKSMDP and φ : SO → {0, 1} a safety function. Estimate
the unknown process f : X → O whilst avoiding states
so = (v, o) where so ∈ unsafeφ .

In Problem 2, we know the underlying spatial structure of
the environment, and assume it has been discretised into a
set of relevant waypoints. This discretisation can be achieved
manually by a designer, or automatically, e.g. by employing
Voronoi diagrams or gridding the space, removing edges and
cells that intersect with the obstacles. Quantifying the qual-
ity of our estimate depends on the robot’s objective and the
approach used for estimation, thus we deliberately leave it
undefined in the problem definition above. In our proposed
approach, we use the variance of the GP predictions of f on
the waypoints, as will be explained in Sect. 6.2.

Second, we remove the assumption of a known map – and
hence of a known PKSMDP – and consider the problem of
safely exploring and mapping the environment. To do so, we
assume the robot is equipped with a sensor (e.g. lidar) that
is able to build an occupancy map incrementally, which is in
turn used to classify voxels as unknown, occupied or free as
described in Sect. 3.3.

Problem 3 Let X be a bounded environment, M a grid map
representation of X , and φ : SO → {0, 1} a safety function.
Classify as much of M as possible as being in free or occu-
pied, whilst avoiding states so = (v, o) where so ∈ unsafeφ .

To solve Problem 3, we will adapt the solution of Prob-
lem 2 to incrementally build and solve estimates of a
PKSMDP rather than consider the exploration of a fixed
underlying PKSMDP.

5 GP-based PKSMDP estimation

Central to our approach is the construction of an MDP that
estimates the unknown process represented in the PKSMDP
given the data already observed by the robot. Our approach
to do so is to use a GP, trained on observations up to timestep
t , to iteratively estimate the mapping o between known state
feature values and their corresponding unknown state feature
values.

We start by partitioning the domain of the unknown pro-
cess O into a finite set of intervals of possible values of
the unknown process, allowing us to abstract the continuous
aspect of the problem.

Definition 9 We consider the finite partitions of O defined as
the sets of intervals I. Given o ∈ O , we write I [o] to denote
the interval in I that contains o.

Partitioning the continuous space of the unknown process
into a finite number of intervals enables the use standard solu-
tion techniques for MDPs, removing the need to consider
continuous state spaces. As usual in this kind of discretisa-
tion, increasing the number of intervals leads to a more fine
grained representation of the unknown process, at the cost of
increased computational complexity.

We consider the GP posterior over these intervals.

Definition 10 Let D be a dataset of observations of the
unknown process f , v∗ ∈ V be a waypoint, and I ∈ I be an
interval. The probability of the value of unknown process in
v∗ being in interval I is defined as:

PGP ( f (v∗) ∈ I | D) =
∫

o∈I
PGP ( f (v∗) = o | D) do. (8)

We can now define the Estimated MDP (EstMDP), which
encodes both the probabilistic transition function of the
PKSMDP and the GP model given the observed dataset D.

Definition 11 Let MO = 〈SO , sO , AO , T O ,CO 〉 be a
PKSMDP, I be the set of intervals, and D be a dataset of
observations of the unknown process f .

The estimated MDP is a tupleMD = 〈SD, sD, AO , TD,

CO〉, where TD : (V×I)× AO × (V×I) → [0, 1], where:

• SD = V × I, i.e., the state space are pairs of waypoints
and intervals over the unknown process value at those
waypoints;

• sD = (v, I [ω(v)]), where v ∈ V is the initial waypoint
of the robot;

• The transition function is defined as

TD((v, I ), (v, vg), (v
′, I ′)) =

T O((v, I ), (v, vg), v
′)PGP ( f (v′) ∈ I ′ | D), (9)

where T O
(
(v, I ), (v, vg), v

′) is the average of
T O((v, o), (v, vg), v

′) along interval I = [l, u]:

T O((v, I ),(v, vg), v
′) =

∫ u
l T O((v, o), (v, vg), v

′)do
u − l

. (10)

The EstMDP defines a transition function for which we
can plan for using standard techniques. It does so by (i) defin-
ing the transition function over intervals of O rather than O
itself, by averaging it along each interval; and (ii) completing
the transition definition, byweighting the transition probabil-
ities in T O the GP estimate with the GP posterior over each
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Fig. 1 Construction of the estimated MDP transition function TD ,
combining the PKSMDP probabilistic transition function T O and GP
predictive posterior given the dataset

possible interval, given the set of observed data D. Figure1
depicts an example TD.

The EstMDP is at the core of the exploration algorithms
presented in the next two sections. To reason about safety on
the EstMDP, we define the set of unsafe EstMDP states.

Definition 12 Let MD be an EstMDP. The set of unsafe
states of MD is defined as

Sunsafe = {(v, I ) ∈ SD | ∃o ∈ I s.t. φ((v, o)) = 0}, (11)

and the set of safe states of MD is defined as

Ssafe = SD \ Sunsafe. (12)

States (s, I ) are considered unsafe if they are unsafe for any
o ∈ I . This is an overestimate of the set of unsafe states,
which in turns lead to a conservative definition of safe states.
For convenience, we also define the set of safe intervals for
a specific waypoint v:

Isafe(v) = {I ∈ I | (v, I ) ∈ Ssafe}. (13)

6 SafeEstMDP-Process: modelling an
unknown hazard

In this section, we present our approach to Problem 2, i.e.,
whenwe assume a known underlying navigation graph V and
our goal is to predict f as well as possible. Given that we use
a GP to estimate f , we stop exploration when the predictive
variance of the GP is within a bound for all waypoints in V
that can be reached safely.

6.1 Algorithm description

The flow diagram (Fig. 2) provides a high-level descrip-
tion of the exploration approach.At each exploration step, the
robot uses its current knowledge of the PKSMDP to deter-
mine which goal state it should next visit in order to best
improve its knowledge of other uncertain states. It uses the
EstMDP to represent its current knowledge of the PKSMDP
and makes decisions based on this estimation.

While executing the current policy π that has been cho-
sen to reach the current goal state, the robot carries out a
policy safety check at each state. Carrying out the safety
check allows the robot to replan when the probability of
safely reaching the goal falls below the threshold pmin. This
check is particularly key when the transition function of the
PKSMDP depends on the value of the unknown process, as
the policymay entirely fail to reach the goal state if the values
of the unknown process are not as the algorithm expected at
goal selection time.

Constructing the EstMDP always uses themost up-to-date
GP posterior, which is maintained within the GP manager
module, and the PKSMDP given as input. In the next sec-
tion, we will discuss how we can also build an PKSMDP
incrementally, based on occupancy data sensed by the robot.

Algorithm 1 Safe exploration (SafeEstMDP-Process)
Input: PKSMDP Mo, safety function φ, safety probability threshold
pmin, kernel k(x, x ′), initial location v ∈ V
Output: GP posterior over unknown process
1: v ← v

2: vg ← v

3: visited ← ∅
4: D ← ∅
5: while vg �= nil do
6: if v /∈ visited then
7: visited ← visited ∪ {v}
8: D ← D ∪ {(v, ω(v))}
9: Rebuild MD (Definition 11) to consider current D
10: end if
11: if v = vg or

PrπMD ,(v,I [ω(v)])
(
reach¬Sunsafe,{(vg ,I )|(vg ,I )∈Ssafe}

)
< pmin then

12: vg, π ← ChooseGoal (Algorithm 2, Sect. 6.2)
13: end if
14: (v, I [ω(v)]) ← execute π((v, I [ω(v)])) and observe outcome
15: end while
16: No new goal state identified, end exploration

We provide further detail on the approach in Algorithm 1.
The algorithm receives a PKSMDP Mo to be explored, a
safety function φ, a minimum safety probability pmin, a GP
kernel k and an initial location v.

The exploration algorithm repeatedly finds newgoal states
to explore, until nomore goals are available (line 5). The algo-
rithm maintains a set of waypoints visited that have already
been explored (and must therefore be safe) and a dataset D
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Fig. 2 Flow diagram of the
exploration method. Full lines
represent main algorithm loop,
and dashed lines represent
structures responsible for data
gathered during deployment and
construction of the EstMDP
given that data. Parts in blue are
specific to the approach
presented in Sect. 7 (Color
figure online)

Algorithm 2 ChooseGoal
Input: EstMDP MD , visited waypoints visited, current state s = (v, I [ω(v)]), minimum safe probability pmin, accuracy threshold η

Output: New goal waypoint vg and corresponding policy π

1: V ′ ← GetCandidates (Algorithm 3)
2: while V ′ �= ∅ do
3: VN ← set of the first N elements v of V ′
4: V ′ ← V ′ \ VN
5: for v′ ∈ VN do
6: preach(s, v′) ← Pmax

MD ,s

(
reach¬Sunsafe,{(v′,I )|(v′,I )∈Ssafe}

)

7: preturn(v′) ← ∑
I∈Isafe(v′) P

max
MD ,(v′,I )

(
reach¬Sunsafe,{(v′′,I [ω(v′′)])|v′′∈visited}

) · P( f (v′)∈I |D)∑

I ′∈Isafe(v′) P( f (v′)∈I ′ |D)

8: if preach < pmin or preturn < pmin then
9: Remove vcand from VN
10: end if
11: end for
12: if VN �= ∅ then
13: vg ← argmaxv′∈VN

scoreD(s, v′)
14: return vg , and corresponding policy π¬Sunsafe,{(vg ,I )|(vg ,I )∈Ssafe}
15: end if
16: end while
17: return nil

of observations of the unknown process at the explored way-
points. These are updated whenever the robot visits a new
state (lines 7–8).

Before executing an action from the current policy, the
robot checks whether the policy can continue being exe-
cuted safely from the current state. It does this by evaluating
the same constrained reachability problem that was used
to select the current goal state, but now from the current
state. Evaluating π in the policy safety check is significantly
less computationally demanding than generating π as part
of ChooseGoal. When the policy safety probability falls
below a user-defined threshold pmin or the robot reaches its
current exploration goal (line 11), then a new goal state must
be selected. Where the PKSMDP transition and/or cost func-
tion are dependent on unknown value state features, one
may also check the expected cumulative cost of continu-
ing to execute π , and abandon the current goal if the cost

grows significantly beyond the expected cost calculated at
goal selection time.

The ChooseGoal routine and the policy safety check
make use of the EstMDP MD, obtained from Mo and the
GP posterior given the dataset D, as explained in Defini-
tion 11. The robot usesMD to choose a new waypoint to be
explored and computes the corresponding policy, according
toChooseGoal (line 12, Algorithm 2 to be explained next).
Finally, in line 14, the robot executes the action prescribed by
its current policy, observes the outcome location, senses the
value of the unknown process at that location, and updates
the new state accordingly.

6.2 Choice of goal waypoint

The choice of goal waypoint makes use of the EstMDP
model, and is detailed by Algorithm 2. A good goal way-
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point should provide information when observed (i.e. have
a high predictive variance before observation) relative to the
cost taken to reach it and, crucially, be safe to reach and return
from.

Algorithm 3 GetCandidates
Input: EstMDP MD , visited waypoints visited, minimum safe proba-
bility pmin, accuracy threshold η,
Output: Candidate goal waypoint ordered sequence V ′
1: V safe ← {v′ ∈ V \ visited | P(I [ f (v′)] ∈ Isafe(v′) | D) > pmin}
2: return {v′ ∈ V safe | Var( f (v′) | D) ≥ η}, ordered by decreasing

value of Var( f (v′) | D)

In line 1 the set of candidate goalwaypoints is generatedby
GetCandidates, as defined inAlgorithm3.This set consists
of unvisited waypoints that (i) are considered safe with high
probability and (ii) have a GP predictive variance greater
than the accuracy threshold η. We then enter a loop where
we analyse batches of N waypoints (lines 3 and 4).

Because Algorithm 3 orders candidates in V ′ by highest
predictive variance, this will be the N waypoints in V ′ where
theGP is less accurate. Each of thesewaypoints vg is checked
for reachability and returnability probabilities. Specifically,
the reachability probability (line 6) is defined as the maxi-
mum probability of safely reaching the set of states in MD
corresponding to vg from the current state s. The returnabil-
ity probability (line 7) is computed as the weighted average
of the probabilities of safely returning from one of the states
in MD corresponding to vg to a state corresponding to an
already visited (hence, safe) waypoint. For the returnability
check it is assumed that the initial state is safe, hence the
normalisation at the end of line 7. If either of these proba-
bilities is below the safety threshold pmin, they are removed
from the current batch of candidates (lines 8 and 9). Then, if
there are still waypoints in the current batch of candidates,
the remaining waypoint with the highest score (we propose
a scoring function in the next section) is returned as the new
goal waypoint (lines 12–14). The policy returned is the pol-
icy generated from the reachability check for the chosen goal
waypoint. If the current batch of candidates is empty, the pro-
cess is repeated for the next N highest variance waypoints. If
nowaypoint passing the reachability and returnability checks
is found, then all waypoints that could be safely explored
have been visited, and the algorithm returns nil, finishing
the exploration (line 17).

Goal scoring function. The goal scoring function scoreD :
SD × V → R is designed to indicate how beneficial a way-
point v would be to visit and observe from current state s,
given the current observed datasetD. This score should take
into account the GP’s predictive variance at v, the optimal
expected cost to safely reach a state in {(v, I ) | (v, I ) ∈
Ssafe} from current state s, and the reachability/returnability

Fig. 3 An example of a navigation graph G and corresponding Esti-
mated MDP transition function TD , defined based on an interval set
I = {Isafe, Iunsafe}. Numerical values are derived from the GP posterior
given D. Navigation graph edges are annotated with costs, transition
function edges with transition probabilities

probabilities for v. We propose the following scoring func-
tion:

scoreD(s, v) =
Var( f (v) | D)×
E∗
MD,s

(
cumul¬Sunsafe,{(v,I )|(v,I )∈Ssafe}

)−γ1 ×
(preach(s, v)preturn(v) − p2min)

γ2 , (14)

where the parameters γ1 and γ2 provide relative weightings
on different parameters.

Figure3 shows an example EstMDP that might be used
by SafeEstMDP-Process. In this scenario, starting at v1 and
supposing a safety threshold of pmin = 0.5, the selection of
the next goal state (between either v2 or v3) would weigh up
several factors: the cost to reach v2 is higher, but taking action
v3 comes with a significantly higher risk of ending up in an
unsafe state according to the GP. Given that the GP variances
are also similar, v2 would likely be selected as the next goal
node, whereas v3 would only be selected if its variance were
significantly higher.

7 SafeEstMDP-Map: exploring an unknown
environment

In this section, we present our approach to Problem 3, i.e.,
when there is no assumption over the underlying map and
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the goal is to safely explore a bounded environment X rep-
resented by a grid map M, and classify, as free or occupied,
as many cells in M as possible. For this problem, we will
incrementally build the navigation MDPMO (Definition 7)
and stop exploration when the volumetric gain associated to
all safely reachable waypoints in V is less than a specified
threshold.

7.1 Algorithm description

There are two main differences with regards to the approach
presented in the previous section: (i) there is a naviga-
tion graph construction process running in parallel with
Algorithm 1. Instead of receiving a complete PKSMDP a
priori, Algorithm 1 constructs an updated MO whenever
it needs to build an estimated MDP MD, making use of
the most up-to-date navigation graph representation of the
currently explored environment; and (ii) the candidate way-
point selection, scoring function and stopping condition of
ChooseGoal (Algorithm 2) are updated for the new explo-
ration objective of safely mapping the environment. The blue
part of the diagram in Fig. 2 highlights this additional step.

7.2 Incremental navigation graph construction

Our exploration system requires a mechanism for incre-
mentally growing MO based on local sensor measure-
ments. This mechanism assumes that the robot navigation
is deterministic, i.e., the transition function is such that
T O((v, o), (v, v′), v′′) = 1 if v′′ = v′, and 0 otherwise.
Furthermore, we consider the MDP cost to be based on the
Euclidean distance, i.e., C((v, o), (v, v′)) = ‖v, v′‖2.

The deterministic navigation assumption is used so we do
not need to estimate the outcome distribution of traversing a
specific edge from sensor data, which is outside the scope of
this paper.

However, if we have a mechanism that can do so, then our
approach can dealwith stochastic navigation, as there is noth-
ing in the exploration algorithm that assumes deterministic
dynamics. A PKSMDP with a deterministic transition func-
tion and Euclidean distance cost can be fully defined by its
underlying graph G = (V , AO). In the remainder of this sub-
section, we describe how to incrementally build G. Note that
any other cost function that maps pairs of waypoints to a pos-
itive number can be considered; we use Euclidean distance
for ease of presentation. Furthermore, whilst we consider ray
casting in a grid map which is derived from lidar scans, any
other approach to calculate volumetric gain could be used.
The graph-extending process is described in Algorithm 4.

The algorithm casts rays outwards from the robot’s cur-
rent location v in all directions within a horizontal plane, in
angular increments of δ. Along each ray, stepping outwards
based on a lengthscale �, a new query waypoint vq is cre-

Algorithm 4 ExtendGraph
Input: Existing graph G = (V , AO ), current waypoint v, angle incre-
ment δ, range r , lengthscale �, proximity factor f
Output: Updated graph G
1: for θ ∈ [0, 2π ] in increments of δ do
2: vprev ← v

3: for d ∈ [�, r ] in increments of � do
4: vq ← vprev + duθ � uθ is the unit vector in direction θ .
5: vc ← ClosestVertex(V , vq )

6: if ‖vq , vc‖2 ≤ f � then
7: vq ← vc � Use existing vertex.
8: end if
9: if PathBetween(vprev, vq ) then
10: V ← V ∪ {vq }
11: AO ← AO ∪ {(vprev, vq ), (vq , vprev)}
12: else
13: break
14: end if
15: vprev ← vq
16: end for
17: end for
18: return G = (V , AO )

ated (line 4). If vq is too close to the nearest pre-existing
waypoint vc, then the nearby waypoint is used as the query
waypoint instead (line 7). Then, the occupancymap is queried
to check if there is a path through free space between the pre-
vious query waypoint vprev and vq (line 9). If such a path
exists, vq is added to the vertices in the navigation graph, and
a bidirectional edge is added linking it to the previous ver-
tex. Otherwise, the current chain of waypoints ends, as it is
presumed blocked by an obstacle. In this way, the algorithm
constructs chains of waypoints outwards from the current
waypoint v through free space, connecting them to existing
nearby waypoints whenever possible.

Figure 4 demonstrates the navigation graph construction
algorithm in action, showing the graph itself as well as a
3D occupancy map obtained from a Clearpath Jackal robot.
The initial navigation graph (Fig. 4a) has edges radiating a
few metres outwards from the robot’s initial location, in all
directions except where the lidar’s line of sight is obstructed.
Figure4b shows a more developed navigation graph after a
few actions have been taken.

7.3 Choice of goal waypoint

The candidate goal selection routine inChooseGoal (Algo-
rithm 2, line 1) now calls the SafeEstMDP-Map version of
GetCandidates (Algorithm 5). The primary candidate set
of states (line 2) is similar to the one returned byAlgorithm 3.
The only two differences are: (i) replacing the GP predictive
variance term with volumetric gain to reflect the information
gain objective, and (ii) specifying a minimum volumetric
gain ηgain that a waypoint must have to be considered as a
primary candidate.
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Fig. 4 Navigation graph construction on a Clearpath Jackal robot simu-
lated inGazebo. Red spheres represent waypoints, yellow lines traversal
actions (Color figure online)

Algorithm 5 GetCandidates (SafeEstMDP-Map)
Input:Visitedwaypoints visited, minimum safe probability pmin, infor-
mation gain threshold ηgain, current waypoint v
Output: Candidate goal waypoint ordered sequence V ′
1: V safe ← {v′ ∈ V \ visited | P(I [ f (v′)] ∈ Isafe(v′) | D) > pmin}
2: V prim ← {v′ ∈ V sa f e | gain(v′) ≥ ηgain}
3: V prog ← {v′ ∈ V sa f e \ V prim | minv′′∈V prim ‖v′, v′′‖2 <

minṽ∈visi ted,v′′∈V prim ‖ṽ, v′′‖2}
4: return V ′ = V prim∪V prog as an ordered set, with elements of V prim

first, ordered by decreasing gain(v′), and elements of V prog after,
ordered by increasing ‖v, v′‖2

However, Algorithm 5 now also returns progression can-
didates (line 3), which are waypoints that progress the
robot towards primary candidates. These are states for which
gain(v) < ηgain, but visiting that state would decrease the
minimum distance between the visited set of states and any
primary candidate state. The addition of progression candi-
dates is necessary because of the decoupling of information
gain from the safety function. For most useful GP kernels,
taking measurements increasingly closer to a primary can-
didate state will provide more information about that state’s
safety.

Figure 5 shows an example of this behaviour. The robot is
at the start of a row of waypoints along a corridor, ending in
a 90◦ corner. At the first timestep (Fig. 5a), the robot is at vi .
For this example, pmin = 0.99. The waypoint vc provides a

viewaround the corner, so has a high information gain and is a
primary candidate. However, as it is several navigation edges
away from the robot, preach(vi , vc) < pmin: the robotwill not
choose vc as a goal state. Thewaypoint va is safely reachable,
but has information gain below the minimum threshold so
cannot be a primary candidate. However, va is a progression
candidate because visiting it would decrease the minimum
distance between the visited set of states and vc. At timestep
2, the robot has chosen va as its new goal and transitioned to
it. Having taken a measurement at va , it is now more certain
that vb and vc are safely reachable. It can then continue to
choose vb, which is now safely reachable with probability
greater than pmin, as a new goal state and progress further
towards vc. Without the addition of progression candidates,
the robot would be unable to move along the corridor in this
manner.

Goal scoring function. Our scoring function is designed
to encourage efficient exploration of the unknown space – a
waypoint v is beneficial to observe if its volumetric gain is
high, as this indicates it would likely be helpful in growing
the robot’s map of the environment. Thus, we replace the GP
variance component in Eq.14 with the information gain term
gain(v) defined in Eq.6. This mirrors Eq.14, except with
the exploration term now driven by increase of information
over the map rather than minimisation of GP variance:

scoreD(s, v) =
gain(v)×
E∗
MD,s(cumul¬Sunsafe,{(v′,I )|(v′,I )∈Ssafe})−γ1×

(preach(s, v)preturn(v) − p2min)
γ2 . (15)

Again, γ1 and γ2 specify the relative weightings of the
components.

8 Experiments

We present a series of experiments in simulation to demon-
strate the performance of the SafeEstMDP-Process and
SafeEstMDP-Map algorithms.

For all experiments, the MDP is solved via PRISM
(Kwiatkowska et al., 2011) using nested value iteration (Lac-
erda et al., 2019), and the GP framework used is GPy (GPy,
2012).

8.1 Evaluation domains

We use two sets of domains for evaluation of our algo-
rithms in simulation. In the first set of domains (Sect. 8.1.1),
the unknown process is nuclear radiation, and the transition
dynamics are independent of the unknown process. The sec-
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Fig. 5 Robot progress towards
high-information-gain states
using progression candidates
(Sect. 7.3)

ond set (Sect. 8.1.2) considers exploration in the presence of
unknown ocean currents, which affect the transition dynam-
ics.

8.1.1 Nuclear

We consider the safety hazard of gamma radiation expo-
sure, which can be harmful at high levels to both robots and
humans. Furthermore, standard gamma radiation survey sen-
sors only provide noisy, local measurements. This matches
our locally observable safety formulation.

We evaluate with the nuclear radiation hazard in two sim-
ulated domains, illustrated in Fig. 6.

1. Reactor room, Fig. 6a: a simulated world representing a
20m × 20m nuclear reactor room, from Wright et al.
(2021).

2. Researchmine, Fig. 6b:A35m× 28mmapbuilt from3D
SLAM in a real underground mine section at Corsham,
UK.

The evaluation of SafeEstMDP-Process in Sect. 8.2 requires
a PKSMDP to be provided. For each domain, PKSMDPs
are pre-generated using 8-connected grid maps with 1m grid
units, which can be seen in Fig. 6. In contrast, in Sect. 8.4 the
PKSMDP is sequentially built over themap by SafeEstMDP-
Map.

Simulation of radioactive environments.
Radiation is simulated using 1/r2 “solid angle” radi-

ation physics (Wright et al., 2021). Radiation sources
{(χ src

i , xsrci )}nsrci=0 have strength χ src
i and pose xsrci . Source

strength is the exposure value at a distance of 1m. The radia-
tion exposure λ(x) at robot pose x ∈ X from these radiation
sources is then:

λ(x) =
nsrc∑

i=1

χ src
i

‖x − xsrci ‖22
. (16)

For each exploration scenario, a PKSMDP (Sect. 8.2) or
a 3D simulated environment (Sect. 8.4) is combined with a
randomly generated distribution of radiation sources. Sam-
pled radiation distributions are discarded when they result

Fig. 6 2Doccupancymaps of both simulated experiment domains,with
the navigationmapused to build thePKSMDP for SafeEstMDP-Process
shown in grey (Color figure online)

in trivial exploration results with too much of the environ-
ment being safe or unsafe. In this work we generate radiation
distributions that result in a minimum of 40% of the environ-
ment’s states being safely reachable from the initial state, and
a maximum of 90%.

Random radiation fields are generated in both of the fol-
lowing ways, with each method contributing 50% of the
evaluation environments:
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Fig. 7 Two valid random radiation distributions, generated according
to Sect. 8.1.1. A table of all radiation distributions used in Sect. 8.2 can
be found in Appendix A.4

1. Random point-source distribution: insert a randomly
chosen number of sources (5 ≤ nsrc ≤ 30), with
uniformly random sampled poses across the environ-
ment’s domain, with randomly sampled z position values
z ∈ {1.0, 1.5, 2.5} and randomly sampled strengths
χ src ∈ {250, 500, 1000, 2000, 5000}. x and y position
values are sampled uniformly within the bounds of the
map ±2m.
An example of this type of radiation distribution can be
seen in Fig. 7a.

2. Randomly generated Gaussian random field distribution:
evenly cover the map with radiation sources at z = 1.0
and draw their log strengths from a Gaussian random
field.
The Gaussian random field is generated with a radial

basis function kernel, using uniformly sampled length-
scale hyperparameter l ∈ {3.0, 5.0, 7.0} and variance
hyperparameter σ ∈ {20, 30, 50, 75}.
An example of this type of radiation distribution can be
seen in Fig. 7b.

GP modelling of radioactive environments.
To explore while ensuring safety with high probability, an

exploration algorithm’sGPmodelmust be able towell-model
the ground-truth hazard function. Previousworks (Silveira et
al., 2018; West et al., 2021; Khuwaileh & Metwally, 2020)
have demonstrated GP regression as capable of accurately
modelling radiation fields in the real world. Silveira et al.
(2018), West et al. (2021) log transforms the radiation level
measurement data, in a similar manner to the log-warped GP
model we describe below. Several features of radiation fields
present challenges for standard GP regression. Firstly, the
values of the radiation intensity function over 3D space may
vary over several orders of magnitude. This is particularly
evident when high-intensity radiation sources are present.
Furthermore, since standard GP predictive Gaussian poste-
rior distributions are unbounded, the GP will assign some
probability to a radiation level < 0. This is clearly nonphys-
ical, as the ground-truth radiation level is non-negative.

Secondly, the standard GP assumption of zero-mean
Gaussian observation noise with input-independent standard
deviation does not hold. At an abstract level, radiation mea-
surements are based on counts of discrete detection events:
for example, counts produced by a Geiger-Muller tube.
Statistically these are samples from a Poisson distribution
with rate parameter λ being the ground-truth radiation level.
Samples from this distribution have standard deviation

√
λ.

Therefore, as the radiation level increases, the absolute mea-
surement noise increases and the relative measurement noise
decreases. Due to this effect and the non-linear behaviour
of the Geiger-Muller tube, real-world radiation sensors are
generally specified with a percentage rather than absolute
reading accuracy (Knoll, 2010).

GPs with a non-Gaussian or heteroscedastic observation
function are non-conjugate and therefore cannot be solved in
closed form. Computationally intensive methods, including
Markov Chain Monte Carlo sampling and Laplace approxi-
mation, are required (Williams & Barber, 1998).

To alleviate these issues, we follow the approach of Snel-
son et al. (2003) and use a log-warped Gaussian process
regression. In this formulation, we model the log of the
radiation level value f (log(rad)) with a GP. This trans-
forms a normally distributed percentage observation noise
with standard deviation σ% in the radiation level into a nor-
mally distributed observation noise with standard deviation
σ , where:
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exp (log(rad) + σ) = rad · (1 + σ%) ,

σ = log (1 + σ%) . (17)

The relative measurement noise formulation therefore better
matches our sensor’s percentage measurement noise. Fur-
thermore, the log-warped GP is also significantly better able
to handle order-of-magnitude variation in the radiation level
compared to a standard GP regression.

EstMDP modelling of radiation levels.
In this domain, the unknown process f : V → R is the

value of the radiation level at each state. As the radiation level
does not affect waypoint transitions, we need only define two
intervals I = {Isafe, Iunsafe} where Isafe = [0, log(λmax)]
and Iunsafe = [log(λmax),∞) and λmax is the radiation level
safety bound. If a non-log GP were used, the EstMDP struc-
ture would be identical, with equivalent intervals Isafe =
[0, λmax] and Iunsafe = [λmax,∞). The exploration GP mod-
els the 1D radiation level at each state: PGP : R2 → Dist(R).
The GP input is {x, y}, in units of metres in a local coordinate
frame.

8.1.2 Unknown currents

In this set of domains, the autonomous agent is an under-
water autonomous vehicle (AUV) exploring the open ocean.
The unknown process is the underwater current, which prob-
abilistically affects the AUV’s transition dynamics. This is
different from the setting of Sect. 8.1.1, where the PKSMDP
transition function T O is deterministic and independent of
O .

The AUV travels in a given direction by diving to a fixed
depth and then travelling at a fixed speed relative to the water
surrounding it, surfacing after a fixed length of time. Depend-
ing on the direction and magnitude of the water currents, this
can result in the AUV surfacing in different locations. We
discretise the ocean into a grid of hexagonal cells, as shown
in Fig. 8. The figure illustrates the three evaluation domains,
Faroe, Guernsey, and Norway, each of which is a 43.2km ×
37.4km area covered by a 24 × 18 hex grid of side length
1.2 km.

The AUV fails its safety specification when it enters a cell
with water depth ≤ 10m, as it is at risk of colliding with
the seabed. These “definitely unsafe” states are known to be
unsafe a priori, based on bathymetry data described below,
and are shown in red in Fig. 8. The AUV also fails its safety
specification when it enters a cell where the water current
magnitude is too high in the direction of an a priori unsafe

Fig. 8 AUV domain areas, showing ground-truth currents (arrows) and
state safety (hex cell colour) (Color figure online)
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Fig. 9 Illustration of possible and sampled outcomes of the AUV nav-
igating from (0, −2) to (0, 0) in the hex grid

state. This would result in the AUV being carried into an
unsafe state before it can dive again. States which may be
unsafe depending on the current value at that state, “maybe
unsafe” states, are shown in yellow in Fig. 8. Dark orange
cells show “maybe unsafe” states which are in fact unsafe
given the ground-truth current value at that state. This is an
example of a more complex safety specification, which is
defined on both known and unknown state feature values.

Actions are to attempt to travel 2 cells in one of the 6
hexagonal directions, with the AUV surfacing at the end of
the action. An action in the north direction from cell (0,−2)
to cell (0, 0) is illustrated by the blue arrow in Fig. 9. To
limit the number of possible action outcomes, we wish to
ensure that the AUV can only surface in the target cell or one
of its immediate neighbours. We do this by calculating the
minimum required AUV velocity for the maximum current
magnitude in the dataset.

As illustrated in Fig. 9a, the distance from an initial cell
to an action’s target cell is 2

√
3D where D is the hex

cell side length. The time taken for the AUV to travel this
distance is 2

√
3D/vAUV seconds. The maximum distance

that the AUV can be carried by the current in this time is
vmax × 2

√
3D/vAUV, where vmax is the maximum current

velocity. If this distance is less than 2D, then the AUV can
only surface in the target cell or one of its immediate neigh-
bours. TheminimumAUVvelocity to ensure this is therefore
vAUV > 1√

3vmax
.

We assume that throughout the dataset the maximum cur-
rent velocity in each axis is 0.65m s−1. We select vAUV =
1.8m s−1, as 1.8 > 1√

3
√

2(0.652)
.

Action costs are the constant time taken to execute an
action: C((v, o), (v, v′)) = 1.

Simulation of unknown currents and underwater
autonomous vehicle.

Ground-truth bathymetry and water current velocity data
is taken from the NORTHWEST_ SHELF_ANALYSIS_
FORECAST_PHY_004_013 dataset1 , which covers the
northwest European shelf area. A kinematic AUV simula-
tor (Budd et al., 2022) is used to forward simulate vehicle
control, actuation and stochastic disturbances in a Monte
Carlo manner, with a 1 Hz simulation frequency. The simu-
lated AUV is a small, moving-mass propellor-driven vehicle
with neutral buoyancy and noisy actuation. Water currents
acting on the simulated vehicle are linearly interpolated from
the ground-truth dataset points. The “true” outcome of a nav-
igation action is sampled by running this simulator with
ground-truth current values, as illustrated in Fig. 9b. This
results in an implicit “ground-truth” MDP with probabilistic
action outcomes.

EstMDP modelling of unknown current navigation.
In this domain, the unknown process f : V → R

2 is the
2D vector of water current velocities at each state. Intervals
I therefore represent a range of values for the north and
east current velocity components vN and vE . We define the
intervals as the cartesian product of two 1D intervals, one
for each component of the 2D vector, i.e. I = IN × IE
where IN = IE for simplicity. We assume that the AUV
noisily measures current velocity at states it passes through,
using an onboard sensor or by analysing its end position after
surfacing. The exploration GP is a coregionalised GP which
models the 2D vector (vE , vN ) of east/north current velocity
at each state: PGP : R2 → Dist(R2). The GP input is {x, y},
in units of metres in a local coordinate frame.

To apply SafeEstMDP-Process to the AUV domain,
we must define the interval-dependent transition function
T O((v, I ), (v, vg), v

′).Wedonot have a closed-formexpres-
sion for T O((v, o), (v, vg), v

′) to use with Eq.10: we can
only sample navigation outcomes from the AUV simulator.
We therefore build a transition kernel which estimates the
probability of each possible outcome, relative to the cell the
action was taken in, given the 2D interval over the current
velocity at that start state. For a specific interval I , an evenly
spaced grid of 10 × 10 current velocity values (vN , vE ) are
taken from the interval.We run 20 repeats of theAUVsimula-
tor for each of these values, and record the resulting surfacing
cell. Figure9b shows 10 sampled outcomes for a specific
(vN , vE ) value. This process gives us an estimate of the prob-
ability of each possible transition outcome given the interval
I , and is independent of start state cell.

1 UK Met Office Marine Data Service. Available: https://www.
metoffice.gov.uk/services/data/met-office-marine-data-service.
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Fig. 10 Scatter plots comparing SafeEstMDP-Process, on the y-axis,
to SafeMDP, on the x-axis. The two algorithms are compared on a
the proportion of the ground-truth safely reachable set the algorithm
is able to correctly mark as safe, b the final KL divergence from the
algorithm’s GP model to a “ground truth” GP model, and c the total

cost the algorithm has incurred by the end of exploration. Total 400
runs of SafeEstMDP-Process and SafeMDP (2 domains, 20 randomly
generated radiation layouts, 10 repeats). All runs terminated without
breaking the safety specification. See Fig. 21 (appendix) for plots of all
scenarios shown here

8.2 SafeEstMDP-Process: mapping an unknown
hazard

In this section, we compare SafeEstMDP-Process to
SafeMDP (Turchetta et al., 2016), a prior MDP safe explo-
ration algorithm which aims to determine the ground-truth
maximum reachable safe set of states. To generate a navi-
gation MDP and unknown process to explore, we generate
8-connected grid maps with side length 1m in the reactor
room and research mine domains, combined with randomly
generated radiation distributions according to Sect. 8.1.1.

For all experiments pmin = 0.99, the goal selection
weights are γ1 = 1.0 and γ2 = 0.8, the batch evaluation
size N = 8 and η = 0.01. Unless otherwise stated, the GP
kernel was an RBF with variance 1.0 and lengthscale 2.0m.
We also ran these experiments with a Matern 3/2 kernel,
producing qualitatively similar results. The GP observation
noise σ 2 = 0.0009, corresponding to σ% ≈ 3% (Eq.17).
The robot’s initial position is randomly sampled from a set
of 4 waypoints. The safety bound λmax = 1000.

Figure 10 compares SafeEstMDP-Process and SafeMDP
across 400 runs for each algorithm: for each of the 2 domains,
20 radiation layouts are randomly generated and used for
10 repeats. Figure10a shows the proportion of the ground
truth safely reachable state space that each algorithm has
correctly determined as safe, at the point of termination
(larger is better). Similarly, Fig. 10b shows the KL diver-
gence at termination between each algorithm’s GP model
and a ground-truth GP trained on noiseless observations of
every state in the PKSMDP (smaller is better). KL diver-

gence is evaluated at all states in the PKSMDP, and is
normalised relative to the KL divergence of the algorithm’s
initial GP at the start of execution. Figure10c shows the
cumulative cost incurred by the robot at termination time.
Each figure includes a grey, dashed equal performance line.
Note the different axis scaling in Fig. 10c, which we use to
make visualisation easier. The need to do so highlights how
SafeEstMDP-Process clearly outperformsSafeMDP in terms
of cost. Finally, for a given marker on these scatter plots, an
illustration of the corresponding exploration scenario can be
found in Appendix A.4.

The symmetry and strong diagonal distributions of 10a
and 10b illustrate that SafeEstMDP-Process and SafeMDP
are equally capable of exploring the safely reachable state
space and building an accurate model of the unknown
process. The major difference is seen in 10c: SafeEstMDP-
Process is capable of achieving the same resultswith far lower
cost incurred. This is particularly true when exploringMDPs
with much of the state space safely reachable, e.g. the dark
blue circle markers ● at the top right of a and c, bottom left
of b. In this scenario SafeEstMDP-Process incurs approxi-
mately 5× less cost than SafeMDP (note that the axes are
not equally scaled).

The distribution ofmarkers in these figures illustrates that,
for both algorithms, it is harder to fully explore the safely
reachable state space in some scenarios than in others. The
dark blue circle marker ● scenario consistently terminates
with close to 100% of the safe reachable state space explored
and close to 0 final KL divergence. Conversely, the dark pur-
ple circle marker ● scenario is consistently barely explored,
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Fig. 11 The effects of varying GP kernel lengthscale (x axis) on the behaviour of SafeEstMDP-Process. Total 400 runs per GP lengthscale value
(2 domains, 20 randomly generated radiation layouts, 10 repeats)

with the explored proportion close to 0%. As can be seen in
the plot of this scenario in Appendix A.4 Fig. 21b, the initial
location for the robot immediately neighbours an unsafe area.
This results in the robot being unable to choose a location to
move to while ensuring safety with sufficient certainty.

One scenario which shows more complex behaviour is
that represented by the dark green cross marker ✖. In this
scenario, most runs terminate with close to 80% of the safe
reachable area explored, but some terminate with less than
10%. This scenario is plotted in Fig. 7a, which shows that
the robot initial location is at the start of a corridor leading
to the rest of the map. To reach the rest of the map, the robot
must travel towards a more dangerous area before rounding
the corner. In some runs, the robot will sample higher-than-
average noisy radiation level measurements. It may conclude
that it cannot safely round the corner, and will terminate
without exploring the rest of the map.

Overall, these results demonstrate SafeEstMDP-Process’s
improved cost efficiencyoverSafeMDP.SafeEstMDP-Process
is able to choose goal states that are multiple steps away
from the currently explored set, while SafeMDP will only
choose goal states neighbouring the currently explored set.
By evaluating the safety and cost of paths to goal states,
SafeEstMDP-Process is able to trade off exploration infor-
mation gain vs reachability cost, so is able to explore the state
space more efficiently. Considering multi-step paths to goal
states also offers the option of taking measurements only at
goal points (rather than every visited state), which is useful
if measurements are expensive or time-consuming.

In Fig. 11 we analyse the effect of the GP kernel length-
scale hyperparameter on safe exploration with SafeEstMDP-
Process. Figure11a illustrates the number of runs that termi-
nate safely compared to those that terminate by breaking the
safety bound. Figure11b shows distributions of the explored
ground-truth safely reachable state space over many runs,

this time depicted as a violin plot to facilitate comparison
across the three tested lengthscale values.

It can be seen that a longer lengthscale value allows the
exploration algorithm to reliably exploremore of the ground-
truth safely reachable state space, resulting in a higher
concentration of runs with safely explored proportion close
to 1.0 in 11b. With a lengthscale value of 1.5m, almost all
runs are unable to explore more than 20% of the safe state
space.

However, the safety guarantees provided by GP safe
exploration algorithms are entirely dependent on accurate
modelling of the hazard function with the GP. Despite pmin’s
value of 0.99, a lengthscale of 2.5m does not model the
radiation hazard function well enough, which yields overly
aggressive robot behaviour. This results in the robot break-
ing the safety bound in 3.25% of the runs, compared to only
0.5% of runs for lengthscale 2.0m.

In Appendix A.3, we show the results from repeating
these experiments using aGPwithout the log-warping,which
results in a significantly higher rate of safety bound violation,
since the model less accurately captures the true behaviour
of the radiation hazard. Note that, because pmin attempts to
bound the safety of an individual goal choice inSafeEstMDP-
Process, pmin is not directly comparable with success rates
over exploration episodes with many goal choice steps.

We carry out analysis of the effect of the γ1 and γ2 goal
choice hyperparameters (Eq.14) on SafeEstMDP-Process in
Fig. 12. Figure12a shows that as more priority is placed on
finding low-cost goal states by increasing γ1, the final cumu-
lative cost incurred by the robot decreases. This is expected,
as the robot is more likely to choose goal states that are
closer to the current state, and likely takes a more efficient
path throughout execution. As well as decreasing the relative
importance of the other goal candidate score components,
increasing γ1 also increases the number of goal choice steps
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Fig. 12 Ablation behaviour for SafeEstMDP-Process goal choice hyperparameters. Within violin plots, white dots show median values and thick
black lines show interquartile ranges (Color figure online)

taken throughout exploration, as the robot is more likely to
choose goal states that are closer to the current state. This
will increase the computational cost of the algorithm.

Figure12b shows a possible trend in safety violations as
γ2 increases. Confidence intervals are large as the propor-
tion of safety violations is low, but the trend is consistent
across the three tested values. Confidence intervals are pro-
duced by Jeffreys credible interval analysis using 600 runs
across all radiation domain environments. The figure shows
that the final cumulative cost incurred by the robot is largely
insensitive to the value of γ2. There was also no significant
effect on the number of calls to the goal choice algorithm.
This ablation used a 2.5m lengthscale value to ensure some
safety violations occurred.

8.3 SafeEstMDP-Process: exploration in the
presence of unknown transition dynamics

In this section we demonstrate the ability of SafeEstMDP-
Process to explore safely in the presence of unknown
transition dynamics. Existing MDP safe exploration algo-
rithms such as SafeMDP are not capable of reasoning about
probabilistic and uncertain transition dynamics, so we have
no baselines to compare SafeEstMDP-Process to.

Current velocity measurements have standard deviation
0.03ms−1 in each axis. The GP kernel is an RBF with
variance 0.2 and lengthscale 4 km, which were found to be
suitable for the NWES dataset area. The GP likelihood noise
was fixed to σ 2 = 0.0009. We define current value intervals
IN = IE = {(−0.65,−0.25), (−0.25, 0.25), (0.25, 0.65)},
resulting in 9 intervals. For all AUV experiments pmin =
0.95, the goal selection weights are γ1 = 1.0 and γ2 = 0.8,
the batch evaluation size N = 3 and η = 0.01. “Maybe
unsafe” states are unsafe if vE > 0.25 and the state to the
east is “definitely unsafe”, and similarly for vE < 0.25 and a

Fig. 13 An illustrative execution history of SafeEstMDP-Process in the
AUV domain. White arrows show the final GP model. Dive locations
are marked by green arrows. See Fig. 8b for the ground-truth current
field and safe set (Color figure online)

“definitely unsafe” state to the west. “Maybe unsafe” states
are also unsafe if vE > 0.25 and vN > 0.25 and the state
to the north-east is “definitely unsafe”, and similarly for the
other 3 diagonal directions in the hex grid.

SafeEstMDP-Process was evaluated with 10 runs in each
of the Faroe, Guernsey, and Norway maps. SafeEstMDP-
Process did not visit an unsafe state in any of the 30
runs. Figure13 shows an illustrative execution history of
SafeEstMDP-Process in the Guernsey map, and Fig. 14
shows quantitative results.

Figure14a illustrates the evolution in GP fit quality as the
AUV incurs cost while exploring. GP fit quality is measured
by Kullback–Leibler (KL) divergence from the exploration
GP to a ground-truthGP trained on noiseless observations of
the ground-truth current value at every hex cell. As the AUV

123



Autonomous Robots            (2024) 48:18 Page 19 of 29    18 

Fig. 14 Exploration progress vs cumulative cost (time taken). For each
map, the solid line shows mean value and shaded area shows the range
of values across 10 repeats (Color figure online)

explores and incurs more cost, the GP model becomes more
accurate and the KL divergence therefore decreases.

Similarly, Fig. 14b shows the algorithm’s progress in iden-
tifying the ground-truth safe set of states. The algorithm starts
off immediately considering a large proportion of the state
space to be safe. This is because a majority of states (∼ 83%
of states for Norway and ∼ 90% for Faroe and Guernsey)
do not neighbour an unsafe state so are therefore always
safe. As the AUV explores, it becomes more confident in
the (un)safety of “maybe unsafe” states, and the proportion
of the state space considered safe increases.

SafeEstMDP-Process is able to identify most of the
ground-truth safe set of states and build an accurate model of
the unknown process in all three maps. The hardest map to
explore is Norway, where the best runs were able to identify
∼ 93% of the ground-truth safe set. This is because no runs
successfully reached the top right corner of the map, which
requires passing through a narrow channel with unknown
state safety either side.

8.4 SafeEstMDP-Map: exploring unknown
environments

We evaluate the SafeEstMDP-Map algorithm in the two
nuclear domains shown in Fig. 6, this time in a full physics
simulation in Gazebo (Koenig & Howard, 2004). The algo-
rithm is evaluated in each environment with three radiation
layouts generated randomly as described in Sect. 8.1.1.

For this set of experiments, and those in the following
section, we use pmin = 0.99, goal selectionweights γ1 = 1.5
and γ2 = 0.8, batch evaluation size N = 30, gain threshold
ηgain = 0.1, and volumetric gain parameters αunk = 20.0,
αfree = 1.0, αocc = 0.0. The GP kernel is an RBF with
variance 1.0 and lengthscale 2.0m.TheGPobservation noise
σ 2 = 0.0009, corresponding to σ% ≈ 3% (Eq.17). The
robot’s initial position is randomly sampled from a set of 4
waypoints.

We evaluate our algorithm against two baselines. The first
is a threshold-based algorithm which we denote Threshold-
BasedExplorer (TB), which selects exploration goals using
the same scoring function as SafeEstMDP-Map, but does so
without an explicit hazard model. Instead, the safety func-
tion φ for ThresholdBasedExplorer treats states as safe to
visit simply if the hazard value is no more than some safety
limit L , or unsafe otherwise. It then uses a threshold frac-
tion ϕ ∈ (0, 1) of the safety limit to prevent it from entering
unsafe states. If the robot reaches a state at which the radi-
ation level is more than ϕL on the way to its goal, it marks
all adjacent unvisited states as unsafe, and selects a new goal
from the remaining safe states, thereby turning back from
the path to the previous goal. The second baseline, Mean-
PredictionExplorer (MP), again uses the same goal selection
process as SafeEstMDP-Map, except with a limited version
of the full EstMDP. Rather than weighting the EstMDP inter-
vals based on the GP posterior at each state, this baseline
instead assigns all probability mass to the posterior mean
value at each state. This baseline therefore classifies states
as safe or unsafe based purely on the GP predictive mean,
with no consideration of predictive uncertainty. We evalu-
ate SafeEstMDP-Map against MeanPredictionExplorer and
ThresholdBasedExplorer with ϕ = 0.3 and ϕ = 0.8, simu-
lating each configuration for 30 exploration runs.

The plots in Figs. 15 and 16 show that SafeEstMDP-
Map is able to explore more effectively than the baselines
across the variety of simulated configurations. The mean-
prediction approach frequently results in unsafe termination,
since without the full EstMDP model the safe reachability
check is much less accurate, incorrectly classifying many
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Fig. 15 Experiments for SafeEstMDP-Map in the reactor roomdomain.
Each algorithm is tested on three randomly generated radiation layouts,
with each configuration repeated 30 times. Left: number of runs (out

of 30) terminated successfully: middle: violin plots summarising the
statistics over area explored; right: violin plots summarising the statis-
tics over of distance travelled (Color figure online)

unsafe states as safe. Of the threshold-based baselines, the
more conservative one (ϕ = 0.3) is able to remain safe on
almost every run. However, its exploration coverage onmany
of them is poorer than SafeEstMDP-Map’s, as it will tend to
turn back as soon as its radiation reading begins to increase,
whereas SafeEstMDP-Map’s radiation model allows it in
some cases to continue forwards cautiously. On the other
hand, the more aggressive baseline (ϕ = 0.8) explores more
area, at the cost of far more runs terminating unsafely due to
violating the safety specification.

SafeEstMDP-Map is able to use its GP model to explore
more effectively, pushing forwards when an unexplored area
is likely to be safe, and remaining cautiouswhen it is believed

unsafe. It also scales well with map size, as the EstMDP
model is usually not much larger than the underlying navi-
gation graph – even when the map is large, most waypoints
will have been visited or be safe with probablility close to
1, so only the outer areas of the map will have significant
uncertainty over radiation level. Consequently, the robot can
evaluate dozens of goal choice waypoints per second dur-
ing exploration, allowing for online planning with minimal
delay, even in the researchmine environmentwithmaps of up
to 150 waypoints. In some radiation layouts, SafeEstMDP-
Map does still violate the safety constraint, although this is
likely due to the GP model failing to accurately model the
radiation field. This issue could be mitigated through further
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Fig. 16 Experiments for SafeEstMDP-Map in the research mine
domain for different radiation layouts. Each algorithm is tested on three
randomly generated radiation layouts, with each configuration repeated
30 times. Left: number of runs (out of 30) terminated successfully: mid-

dle: violin plots summarising the statistics over area explored; right:
violin plots summarising the statistics over of distance travelled (Color
figure online)

tuning or, more generally, applying domain knowledge in the
design of the GP kernel.

9 Deployment in a physical environment

We further validated our exploration algorithm by deploying
it in a physical environment – the Corsham Research Mine –
integrating it with a complete robotic hardware and software
stack. Our experiments used simulated radiation sources, due
to the health and safety difficulties of working with real radi-
ation.

9.1 Hardware and system configuration

Our experiments were conducted on a Boston Dynamics
Spot robot, shown with its sensor payload in Fig. 17a. The
robot’s on-board computer was an Intel NUC with an Intel
i7-8559U processor, a 256 GB SSD and 16 GB of RAM. For
perception, the robot was equipped with an Ouster OS0-64
3D lidarwith a full 360◦ field of viewaround the robot. Local-
isation andmapping of the environment were provided by the
VILENS SLAM system (Wisth et al., 2022), and interfaces
between modules were through the robot operating system
(ROS) Quigley et al. (2009).
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Fig. 17 Progression of a single run of SafeEstMDP-Map in the Cor-
sham Research Mine. b–d Show a 3D occupancy map representing the
robot’s knowledge of the world around it (filtered for visual clarity), as

well as a topological graph constructed online for planning and naviga-
tion. The grayscale background represents (ground truth) log radiation
levels as a heatmap, with darker regions corresponding to higher levels

The radiation simulation system (Sect. 8.1.1) must know
the ground truth position of the robot and the radiation
sources. In the fully simulated experiments, the ground-truth
robot position is readily available. However, there was no
external ground-truth source (e.g. a motion-capture system)
available in Corsham Research Mine. To provide ground-
truth robot positioning,we therefore ran a separate instanceof
the VILENS SLAM system in localisation mode (i.e. using a
pre-built full coverage 3Dmap of the environment). Indepen-
dently from the ground-truth localisation system, an online
VILENS instance provided SLAM for each experiment run.
The navigation graph construction component (Algorithm 4)
used the coordinate system and OctoMap established by the
online SLAM system.

9.2 Deployment results

In order to illustrate the behaviour that can be obtained from
the SafeEstMDP-Map in the realworld, this section first steps
through a successful run of the algorithm in the Corsham
Research Mine. The output from this particular run is shown
in Fig. 17. We then also comment on the exploration perfor-
mance of the system across further deployments.

The robot started at the location shown in Fig. 17b, from
which SafeEstMDP-Map constructed its initial topological
map. Themap at this point extended atmost only a fewmetres
from the robot’s position, in directions in which line-of-sight
was unobstructed.

This area of the map had relatively low and uniform radia-
tion levels, so the variation in the SafeEstMDP-Map scoring
function (Eq.15)was dominated by the volumetric gain term.
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The robot’s first planwas therefore tomove up towards Loca-
tion 2 in Fig. 17d, since the nodes in this direction were
slightly more open than those to the right, and were therefore
expected to provide more information for growing the map.

Upon reaching Location 2, the robot found the corri-
dor blocked. Additionally, now that its map of this area
was more complete, there was very little unobserved space
nearby, so all nearby nodes had volumetric gain values
below the required threshold to act as exploration candidates.
Therefore, SafeEstMDP-Map turned back towards its other
unexplored frontier at Location 3, where the nodes still had
high exploration scores and were considered safe.

From Location 3, the robot was able to map the entire
“room” located below it (Fig. 17c), thus there was no more
unexplored space there and no need to explore further down-
wards. Instead, the robot moved to the right, incrementally
extending its map towards Location 4 as shown in the figure.
It is worth noting here that Fig. 17d does not show every goal
selected by SafeEstMDP-Map during the run, but rather a
simplified intuitive representation of the path followed – in
reality, when moving into unexplored territory, the algorithm
tends to plan only a few nodes ahead at a time, since far-away
nodes cannot be known with high confidence to be safe.

As the robot approached Location 4, the radiation levels it
measured began to increase, as indicated by the darker patch
in Fig. 17d. As this happened, SafeEstMDP-Map became
more cautious, tending to generate plans that only moved the
robot forwards one node at a time, or had it visit additional
nodes near the frontier rather than pushing aggressively into
the unknown region. Ultimately, when the robot did reach
Location 4, the unvisited nodes ahead of it were deemed
unsafe based on the GP model. The unvisited nodes in the
previously explored areas of themap, on the other hand, were
still safe to visit, but their volumetric gain values were below
the required threshold. There were therefore no more nodes
that could serve as candidates for SafeEstMDP-Map, so the
run terminated at Location 4.

This is overall a successful run of SafeEstMDP-Map,
exhibiting the desired behaviours of the algorithm. It bal-
anced exploitation of volumetric gain information with
safety, exploring more aggressively when confident about
safety, and becoming more cautious as safety became less
certain.

In total, three full runs of SafeEstMDP-Map were con-
ducted in the Corsham Research Mine using the radiation
layout shown in Fig. 17. In all runs, the system was able
to plan online and successfully explore the majority of
the safely accessible area. With a total accessible area
of approximately 400m2, the system achieved consistent
results of 348.31m2, 321.93m2, 345.07m2 of the environ-
ment explored, without violating the safety specification.

10 Conclusions

In this paper, we presented two algorithms, based on
decision-making under uncertainty and GP modelling of
unknown processes, for safe exploration and mapping of
unknown environments. The first algorithm, SafeEstMDP-
Process, assumes a known map and safely learns the distri-
bution of an unknown hazard, whilst the second algorithm,
SafeEstMDP-Map, drops the known map assumption and
focuses on safely building an environment map. Both these
algorithms rely on the EstMDP, a novel model which con-
siders the uncertainty over a GP posterior of the underlying
unknown process as part of its transition function. Our exper-
iments show that our algorithms are able to safely explore in
a two domains with a range of radiation configurations, and
that the approach can be run in a real robot. In the future,
we intend to extend the approach to goal-driven behaviour in
unexplored regions, and introduce lookahead when consid-
ering where to explore, in contrast with the next-best-state
selection approach presented in this paper.

A Appendix

A.1 Computational complexity

In SafeEstMDP-Process and SafeEstMDP-Map, each goal
selection step requires building and solving an EstMDP,
which involve respectively (i) performing GP inference for
eachwaypoint, and (ii) solving the resultingMDPusingvalue
iteration. Both of these problems have polynomial computa-
tional complexitywith respect to the number ofwaypoints. In

Fig. 18 Scaling of computation time used for EstMDP construction
(which includes all GP inference) and model solving versus number
of states. Values are cumulative over complete runs of SafeEstMDP-
Process on nuclear grid map domains of different sizes, using flat
radiation layouts where all states are safely reachable. Each configu-
ration was repeated 50 times
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contrast, the POMDP planning methods mentioned in Sect. 2
are PSPACE-complete for finite horizons, and would not
scale to problems of this size and larger. Figure18 shows
that, for the domain sizes considered in this work, the Est-
MDP solution step occupies significantly more computation
time than the model construction step. As such, GP inference
does not act as a computational bottleneck to the scalability
of our approach.

A.2 Autonomous underwater vehicle domain details

See Appendix Fig. 19.
For the AUV domain we implemented a policy cost check

alongside the policy safety check, and abandoned the current
goal when the cost of the policy to reach that goal from the
current state was more than 2 times the expected cost-to-goal
from that state as was calculated at goal selection time.

Due to the fact that (with the absence of current) theAUV’s
motion takes it 2 cells per action, we also edited goal policy
generation and execution to allow the policy executor to visit
a goal state by passing through it (hence observing it) rather
than solely by surfacing at the goal state.

The AUV dive depth was 10m.

Fig. 19 Location of the evaluation areas in the northwest European
shelf. Blue colour levels indicate bathmetry depth

A.3 GP comparison

See Appendix Fig. 20.

Fig. 20 The effects of varying GP kernel lengthscale (x axis) on the
behaviour of SafeEstMDP-Process, using a GP model without log-
warping. Total 200 runs per GP lengthscale value (2 domains, 20
randomly generated radiation layouts, 5 repeats)
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A.4 Nuclear domain radiation scenarios

See Appendix Fig. 21.

Fig. 21 Randomly sampled radiation scenarios used in Sect. 8.2. The
black hexagon shows the robot’s initial location. Contour levels are
coloured blue to showa radiation level rad which is 30% ≤ rad < 40%
of the safety bound, and green to show 80% ≤ rad < 90% of the safety

bound. Red shows levels above the safety bound. The two rows of each
figure were generated with the point source method, and the bottom two
rows were generated with the Gaussian field method
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